YES(?,O(1)) * Step 1: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. start(A,B) -> eval(A,B) True (1,1) 1. eval(A,B) -> eval(B,A) [A >= 1 + B] (?,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{1},1->{1}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,1)] * Step 2: FromIts WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. start(A,B) -> eval(A,B) True (1,1) 1. eval(A,B) -> eval(B,A) [A >= 1 + B] (?,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{1},1->{}] + Applied Processor: FromIts + Details: () * Step 3: AddSinks WORST_CASE(?,O(1)) + Considered Problem: Rules: start(A,B) -> eval(A,B) True eval(A,B) -> eval(B,A) [A >= 1 + B] Signature: {(eval,2);(start,2)} Rule Graph: [0->{1},1->{}] + Applied Processor: AddSinks + Details: () * Step 4: Decompose WORST_CASE(?,O(1)) + Considered Problem: Rules: start(A,B) -> eval(A,B) True eval(A,B) -> eval(B,A) [A >= 1 + B] eval(A,B) -> exitus616(A,B) True Signature: {(eval,2);(exitus616,2);(start,2)} Rule Graph: [0->{1},1->{2}] + Applied Processor: Decompose Greedy + Details: We construct a looptree: P: [0,1,2] * Step 5: AbstractSize WORST_CASE(?,O(1)) + Considered Problem: (Rules: start(A,B) -> eval(A,B) True eval(A,B) -> eval(B,A) [A >= 1 + B] eval(A,B) -> exitus616(A,B) True Signature: {(eval,2);(exitus616,2);(start,2)} Rule Graph: [0->{1},1->{2}] ,We construct a looptree: P: [0,1,2]) + Applied Processor: AbstractSize Minimize + Details: () * Step 6: AbstractFlow WORST_CASE(?,O(1)) + Considered Problem: Program: Domain: [A,B] start ~> eval [A <= A, B <= B] eval ~> eval [A <= B, B <= A] eval ~> exitus616 [A <= A, B <= B] + Applied Processor: AbstractFlow + Details: () * Step 7: Lare WORST_CASE(?,O(1)) + Considered Problem: Program: Domain: [tick,huge,K,A,B] start ~> eval [] eval ~> eval [A ~=> B,B ~=> A] eval ~> exitus616 [] + Applied Processor: Lare + Details: start ~> exitus616 [A ~=> B,B ~=> A] YES(?,O(1))