YES * Step 1: UnsatPaths YES + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] (?,1) 3. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [B >= 100] (?,1) 4. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] (?,1) 5. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True (?,1) 7. evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,3)] * Step 2: FromIts YES + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] (?,1) 3. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [B >= 100] (?,1) 4. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] (?,1) 5. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True (?,1) 7. evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] + Applied Processor: FromIts + Details: () * Step 3: Decompose YES + Considered Problem: Rules: evalfstart(A,B,C) -> evalfentryin(A,B,C) True evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [B >= 100] evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True evalfreturnin(A,B,C) -> evalfstop(A,B,C) True Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Rule Graph: [0->{1},1->{2},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] + Applied Processor: Decompose NoGreedy + Details: We construct a looptree: P: [0,1,2,3,4,5,6,7,8] | `- p:[2,6,4,7,5] c: [4,6] | `- p:[2,7,5] c: [2,5,7] * Step 4: CloseWith YES + Considered Problem: (Rules: evalfstart(A,B,C) -> evalfentryin(A,B,C) True evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [B >= 100] evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True evalfreturnin(A,B,C) -> evalfstop(A,B,C) True Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Rule Graph: [0->{1},1->{2},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] ,We construct a looptree: P: [0,1,2,3,4,5,6,7,8] | `- p:[2,6,4,7,5] c: [4,6] | `- p:[2,7,5] c: [2,5,7]) + Applied Processor: CloseWith True + Details: () YES