YES * Step 1: UnsatPaths YES + Considered Problem: Rules: 0. f0(A) -> f4(B) True (1,1) 1. f4(A) -> f4(1 + A) [3 >= A && A >= 1] (?,1) 2. f4(A) -> f4(1) [0 >= A && 3 >= A] (?,1) 3. f4(A) -> f12(A) [A >= 4] (?,1) Signature: {(f0,1);(f12,1);(f4,1)} Flow Graph: [0->{1,2,3},1->{1,2,3},2->{1,2,3},3->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,2),(2,2),(2,3)] * Step 2: FromIts YES + Considered Problem: Rules: 0. f0(A) -> f4(B) True (1,1) 1. f4(A) -> f4(1 + A) [3 >= A && A >= 1] (?,1) 2. f4(A) -> f4(1) [0 >= A && 3 >= A] (?,1) 3. f4(A) -> f12(A) [A >= 4] (?,1) Signature: {(f0,1);(f12,1);(f4,1)} Flow Graph: [0->{1,2,3},1->{1,3},2->{1},3->{}] + Applied Processor: FromIts + Details: () * Step 3: Decompose YES + Considered Problem: Rules: f0(A) -> f4(B) True f4(A) -> f4(1 + A) [3 >= A && A >= 1] f4(A) -> f4(1) [0 >= A && 3 >= A] f4(A) -> f12(A) [A >= 4] Signature: {(f0,1);(f12,1);(f4,1)} Rule Graph: [0->{1,2,3},1->{1,3},2->{1},3->{}] + Applied Processor: Decompose NoGreedy + Details: We construct a looptree: P: [0,1,2,3] | `- p:[1] c: [1] * Step 4: CloseWith YES + Considered Problem: (Rules: f0(A) -> f4(B) True f4(A) -> f4(1 + A) [3 >= A && A >= 1] f4(A) -> f4(1) [0 >= A && 3 >= A] f4(A) -> f12(A) [A >= 4] Signature: {(f0,1);(f12,1);(f4,1)} Rule Graph: [0->{1,2,3},1->{1,3},2->{1},3->{}] ,We construct a looptree: P: [0,1,2,3] | `- p:[1] c: [1]) + Applied Processor: CloseWith True + Details: () YES