YES * Step 1: UnsatPaths YES + Considered Problem: Rules: 0. eval0(A,B,C) -> eval1(A,B,C) [A >= 1] (1,1) 1. eval1(A,B,C) -> eval1(A,A + B,C) [A >= 1 + B && C >= 1 + A && A >= 1] (?,1) 2. eval1(A,B,C) -> eval1(A,B,-1*A + B) [A >= 1 + B && C >= 1 + A && A >= 1] (?,1) Signature: {(eval0,3);(eval1,3)} Flow Graph: [0->{1,2},1->{1,2},2->{1,2}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,1),(2,2)] * Step 2: FromIts YES + Considered Problem: Rules: 0. eval0(A,B,C) -> eval1(A,B,C) [A >= 1] (1,1) 1. eval1(A,B,C) -> eval1(A,A + B,C) [A >= 1 + B && C >= 1 + A && A >= 1] (?,1) 2. eval1(A,B,C) -> eval1(A,B,-1*A + B) [A >= 1 + B && C >= 1 + A && A >= 1] (?,1) Signature: {(eval0,3);(eval1,3)} Flow Graph: [0->{1,2},1->{1,2},2->{}] + Applied Processor: FromIts + Details: () * Step 3: Decompose YES + Considered Problem: Rules: eval0(A,B,C) -> eval1(A,B,C) [A >= 1] eval1(A,B,C) -> eval1(A,A + B,C) [A >= 1 + B && C >= 1 + A && A >= 1] eval1(A,B,C) -> eval1(A,B,-1*A + B) [A >= 1 + B && C >= 1 + A && A >= 1] Signature: {(eval0,3);(eval1,3)} Rule Graph: [0->{1,2},1->{1,2},2->{}] + Applied Processor: Decompose NoGreedy + Details: We construct a looptree: P: [0,1,2] | `- p:[1] c: [1] * Step 4: CloseWith YES + Considered Problem: (Rules: eval0(A,B,C) -> eval1(A,B,C) [A >= 1] eval1(A,B,C) -> eval1(A,A + B,C) [A >= 1 + B && C >= 1 + A && A >= 1] eval1(A,B,C) -> eval1(A,B,-1*A + B) [A >= 1 + B && C >= 1 + A && A >= 1] Signature: {(eval0,3);(eval1,3)} Rule Graph: [0->{1,2},1->{1,2},2->{}] ,We construct a looptree: P: [0,1,2] | `- p:[1] c: [1]) + Applied Processor: CloseWith True + Details: () YES