YES * Step 1: UnsatRules YES + Considered Problem: Rules: 0. eval(A) -> eval(0) [2*B >= 0 && 0 >= 2*B && A = 1] (?,1) 1. eval(A) -> eval(2*B) [2*B >= 0 && 2 + 2*B >= 0 && A = 1 + 2*B] (?,1) 2. eval(A) -> eval(B) [1 >= 2*C (?,1) && 2*C >= 0 && 2*D >= 1 && 1 >= 2*D && 1 >= 2*E && 3*E >= 2 && B >= E && 1 >= 2*F && 3*F >= 2 && F >= B && A = 1] 3. eval(A) -> eval(B) [2*D >= 1 (?,1) && 1 + 2*D >= 0 && 2*D >= 2*C && 1 + 2*C >= 2*D && 2*D >= 2*E && 3*E >= 1 + 2*D && B >= E && 2*D >= 2*F && 3*F >= 1 + 2*D && F >= B && A = 2*D] 4. start(A) -> eval(A) True (1,1) Signature: {(eval,1);(start,1)} Flow Graph: [0->{0,1,2,3},1->{0,1,2,3},2->{0,1,2,3},3->{0,1,2,3},4->{0,1,2,3}] + Applied Processor: UnsatRules + Details: Following transitions have unsatisfiable constraints and are removed: [2] * Step 2: UnsatPaths YES + Considered Problem: Rules: 0. eval(A) -> eval(0) [2*B >= 0 && 0 >= 2*B && A = 1] (?,1) 1. eval(A) -> eval(2*B) [2*B >= 0 && 2 + 2*B >= 0 && A = 1 + 2*B] (?,1) 3. eval(A) -> eval(B) [2*D >= 1 (?,1) && 1 + 2*D >= 0 && 2*D >= 2*C && 1 + 2*C >= 2*D && 2*D >= 2*E && 3*E >= 1 + 2*D && B >= E && 2*D >= 2*F && 3*F >= 1 + 2*D && F >= B && A = 2*D] 4. start(A) -> eval(A) True (1,1) Signature: {(eval,1);(start,1)} Flow Graph: [0->{0,1,3},1->{0,1,3},3->{0,1,3},4->{0,1,3}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,0),(0,1),(0,3)] * Step 3: FromIts YES + Considered Problem: Rules: 0. eval(A) -> eval(0) [2*B >= 0 && 0 >= 2*B && A = 1] (?,1) 1. eval(A) -> eval(2*B) [2*B >= 0 && 2 + 2*B >= 0 && A = 1 + 2*B] (?,1) 3. eval(A) -> eval(B) [2*D >= 1 (?,1) && 1 + 2*D >= 0 && 2*D >= 2*C && 1 + 2*C >= 2*D && 2*D >= 2*E && 3*E >= 1 + 2*D && B >= E && 2*D >= 2*F && 3*F >= 1 + 2*D && F >= B && A = 2*D] 4. start(A) -> eval(A) True (1,1) Signature: {(eval,1);(start,1)} Flow Graph: [0->{},1->{0,1,3},3->{0,1,3},4->{0,1,3}] + Applied Processor: FromIts + Details: () * Step 4: Decompose YES + Considered Problem: Rules: eval(A) -> eval(0) [2*B >= 0 && 0 >= 2*B && A = 1] eval(A) -> eval(2*B) [2*B >= 0 && 2 + 2*B >= 0 && A = 1 + 2*B] eval(A) -> eval(B) [2*D >= 1 && 1 + 2*D >= 0 && 2*D >= 2*C && 1 + 2*C >= 2*D && 2*D >= 2*E && 3*E >= 1 + 2*D && B >= E && 2*D >= 2*F && 3*F >= 1 + 2*D && F >= B && A = 2*D] start(A) -> eval(A) True Signature: {(eval,1);(start,1)} Rule Graph: [0->{},1->{0,1,3},3->{0,1,3},4->{0,1,3}] + Applied Processor: Decompose NoGreedy + Details: We construct a looptree: P: [0,1,3,4] | `- p:[1,3] c: [3] | `- p:[1] c: [1] * Step 5: CloseWith YES + Considered Problem: (Rules: eval(A) -> eval(0) [2*B >= 0 && 0 >= 2*B && A = 1] eval(A) -> eval(2*B) [2*B >= 0 && 2 + 2*B >= 0 && A = 1 + 2*B] eval(A) -> eval(B) [2*D >= 1 && 1 + 2*D >= 0 && 2*D >= 2*C && 1 + 2*C >= 2*D && 2*D >= 2*E && 3*E >= 1 + 2*D && B >= E && 2*D >= 2*F && 3*F >= 1 + 2*D && F >= B && A = 2*D] start(A) -> eval(A) True Signature: {(eval,1);(start,1)} Rule Graph: [0->{},1->{0,1,3},3->{0,1,3},4->{0,1,3}] ,We construct a looptree: P: [0,1,3,4] | `- p:[1,3] c: [3] | `- p:[1] c: [1]) + Applied Processor: CloseWith True + Details: () YES