YES * Step 1: UnsatPaths YES + Considered Problem: Rules: 0. f2(A,B,C) -> f300(A,B,C) True (1,1) 1. f300(A,B,C) -> f1(A,B,D) [0 >= B] (?,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3},1->{},2->{},3->{1,2,3}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(3,2)] * Step 2: FromIts YES + Considered Problem: Rules: 0. f2(A,B,C) -> f300(A,B,C) True (1,1) 1. f300(A,B,C) -> f1(A,B,D) [0 >= B] (?,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3},1->{},2->{},3->{1,3}] + Applied Processor: FromIts + Details: () * Step 3: Decompose YES + Considered Problem: Rules: f2(A,B,C) -> f300(A,B,C) True f300(A,B,C) -> f1(A,B,D) [0 >= B] f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] Signature: {(f1,3);(f2,3);(f300,3)} Rule Graph: [0->{1,2,3},1->{},2->{},3->{1,3}] + Applied Processor: Decompose NoGreedy + Details: We construct a looptree: P: [0,1,2,3] | `- p:[3] c: [3] * Step 4: CloseWith YES + Considered Problem: (Rules: f2(A,B,C) -> f300(A,B,C) True f300(A,B,C) -> f1(A,B,D) [0 >= B] f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] Signature: {(f1,3);(f2,3);(f300,3)} Rule Graph: [0->{1,2,3},1->{},2->{},3->{1,3}] ,We construct a looptree: P: [0,1,2,3] | `- p:[3] c: [3]) + Applied Processor: CloseWith True + Details: () YES