YES * Step 1: UnsatPaths YES + Considered Problem: Rules: 0. f1(A,B,C) -> f2(A,B,C) True (1,1) 1. f2(A,B,C) -> f300(A,B,D) [B >= 3 && A >= 2] (?,1) 2. f2(A,B,C) -> f2(1 + A,1 + B,C) [2 >= B && A >= 2] (?,1) 3. f2(A,B,C) -> f2(1 + A,1 + B,C) [1 >= A] (?,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3},1->{},2->{1,2,3},3->{1,2,3}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,3)] * Step 2: FromIts YES + Considered Problem: Rules: 0. f1(A,B,C) -> f2(A,B,C) True (1,1) 1. f2(A,B,C) -> f300(A,B,D) [B >= 3 && A >= 2] (?,1) 2. f2(A,B,C) -> f2(1 + A,1 + B,C) [2 >= B && A >= 2] (?,1) 3. f2(A,B,C) -> f2(1 + A,1 + B,C) [1 >= A] (?,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3},1->{},2->{1,2},3->{1,2,3}] + Applied Processor: FromIts + Details: () * Step 3: Decompose YES + Considered Problem: Rules: f1(A,B,C) -> f2(A,B,C) True f2(A,B,C) -> f300(A,B,D) [B >= 3 && A >= 2] f2(A,B,C) -> f2(1 + A,1 + B,C) [2 >= B && A >= 2] f2(A,B,C) -> f2(1 + A,1 + B,C) [1 >= A] Signature: {(f1,3);(f2,3);(f300,3)} Rule Graph: [0->{1,2,3},1->{},2->{1,2},3->{1,2,3}] + Applied Processor: Decompose NoGreedy + Details: We construct a looptree: P: [0,1,2,3] | +- p:[3] c: [3] | `- p:[2] c: [2] * Step 4: CloseWith YES + Considered Problem: (Rules: f1(A,B,C) -> f2(A,B,C) True f2(A,B,C) -> f300(A,B,D) [B >= 3 && A >= 2] f2(A,B,C) -> f2(1 + A,1 + B,C) [2 >= B && A >= 2] f2(A,B,C) -> f2(1 + A,1 + B,C) [1 >= A] Signature: {(f1,3);(f2,3);(f300,3)} Rule Graph: [0->{1,2,3},1->{},2->{1,2},3->{1,2,3}] ,We construct a looptree: P: [0,1,2,3] | +- p:[3] c: [3] | `- p:[2] c: [2]) + Applied Processor: CloseWith True + Details: () YES