YES * Step 1: UnsatPaths YES + Considered Problem: Rules: 0. f1(A,B,C) -> f300(A,B,D) [A >= B && A >= 1 + B] (?,1) 1. f1(A,B,C) -> f1(1 + A,A,C) [B >= D && A = B] (?,1) 2. f1(A,B,C) -> f1(1 + A,B,C) [B >= 1 + A] (?,1) 3. f2(A,B,C) -> f1(A,B,C) True (1,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{},1->{0,1,2},2->{0,1,2},3->{0,1,2}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,1),(1,2),(2,0)] * Step 2: FromIts YES + Considered Problem: Rules: 0. f1(A,B,C) -> f300(A,B,D) [A >= B && A >= 1 + B] (?,1) 1. f1(A,B,C) -> f1(1 + A,A,C) [B >= D && A = B] (?,1) 2. f1(A,B,C) -> f1(1 + A,B,C) [B >= 1 + A] (?,1) 3. f2(A,B,C) -> f1(A,B,C) True (1,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{},1->{0},2->{1,2},3->{0,1,2}] + Applied Processor: FromIts + Details: () * Step 3: Decompose YES + Considered Problem: Rules: f1(A,B,C) -> f300(A,B,D) [A >= B && A >= 1 + B] f1(A,B,C) -> f1(1 + A,A,C) [B >= D && A = B] f1(A,B,C) -> f1(1 + A,B,C) [B >= 1 + A] f2(A,B,C) -> f1(A,B,C) True Signature: {(f1,3);(f2,3);(f300,3)} Rule Graph: [0->{},1->{0},2->{1,2},3->{0,1,2}] + Applied Processor: Decompose NoGreedy + Details: We construct a looptree: P: [0,1,2,3] | `- p:[2] c: [2] * Step 4: CloseWith YES + Considered Problem: (Rules: f1(A,B,C) -> f300(A,B,D) [A >= B && A >= 1 + B] f1(A,B,C) -> f1(1 + A,A,C) [B >= D && A = B] f1(A,B,C) -> f1(1 + A,B,C) [B >= 1 + A] f2(A,B,C) -> f1(A,B,C) True Signature: {(f1,3);(f2,3);(f300,3)} Rule Graph: [0->{},1->{0},2->{1,2},3->{0,1,2}] ,We construct a looptree: P: [0,1,2,3] | `- p:[2] c: [2]) + Applied Processor: CloseWith True + Details: () YES