YES * Step 1: UnsatPaths YES + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G) -> f2(A,B,C,D,E,F,G) [0 >= A] (?,1) 1. f0(A,B,C,D,E,F,G) -> f0(-1 + A,C,-1 + C,A,E,F,G) [A >= 1] (?,1) 2. f2(A,B,C,D,E,F,G) -> f4(A,B,C,D,E,F,H) [0 >= C] (?,1) 3. f2(A,B,C,D,E,F,G) -> f0(H,B,C,D,E,F,G) [H >= 1 && C >= 1] (?,1) 4. f3(A,B,C,D,E,F,G) -> f2(H,B,I,D,E,F,G) True (1,1) Signature: {(f0,7);(f2,7);(f3,7);(f4,7)} Flow Graph: [0->{2,3},1->{0,1},2->{},3->{0,1},4->{2,3}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(3,0)] * Step 2: FromIts YES + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G) -> f2(A,B,C,D,E,F,G) [0 >= A] (?,1) 1. f0(A,B,C,D,E,F,G) -> f0(-1 + A,C,-1 + C,A,E,F,G) [A >= 1] (?,1) 2. f2(A,B,C,D,E,F,G) -> f4(A,B,C,D,E,F,H) [0 >= C] (?,1) 3. f2(A,B,C,D,E,F,G) -> f0(H,B,C,D,E,F,G) [H >= 1 && C >= 1] (?,1) 4. f3(A,B,C,D,E,F,G) -> f2(H,B,I,D,E,F,G) True (1,1) Signature: {(f0,7);(f2,7);(f3,7);(f4,7)} Flow Graph: [0->{2,3},1->{0,1},2->{},3->{1},4->{2,3}] + Applied Processor: FromIts + Details: () * Step 3: Decompose YES + Considered Problem: Rules: f0(A,B,C,D,E,F,G) -> f2(A,B,C,D,E,F,G) [0 >= A] f0(A,B,C,D,E,F,G) -> f0(-1 + A,C,-1 + C,A,E,F,G) [A >= 1] f2(A,B,C,D,E,F,G) -> f4(A,B,C,D,E,F,H) [0 >= C] f2(A,B,C,D,E,F,G) -> f0(H,B,C,D,E,F,G) [H >= 1 && C >= 1] f3(A,B,C,D,E,F,G) -> f2(H,B,I,D,E,F,G) True Signature: {(f0,7);(f2,7);(f3,7);(f4,7)} Rule Graph: [0->{2,3},1->{0,1},2->{},3->{1},4->{2,3}] + Applied Processor: Decompose NoGreedy + Details: We construct a looptree: P: [0,1,2,3,4] | `- p:[0,1,3] c: [0,3] | `- p:[1] c: [1] * Step 4: CloseWith YES + Considered Problem: (Rules: f0(A,B,C,D,E,F,G) -> f2(A,B,C,D,E,F,G) [0 >= A] f0(A,B,C,D,E,F,G) -> f0(-1 + A,C,-1 + C,A,E,F,G) [A >= 1] f2(A,B,C,D,E,F,G) -> f4(A,B,C,D,E,F,H) [0 >= C] f2(A,B,C,D,E,F,G) -> f0(H,B,C,D,E,F,G) [H >= 1 && C >= 1] f3(A,B,C,D,E,F,G) -> f2(H,B,I,D,E,F,G) True Signature: {(f0,7);(f2,7);(f3,7);(f4,7)} Rule Graph: [0->{2,3},1->{0,1},2->{},3->{1},4->{2,3}] ,We construct a looptree: P: [0,1,2,3,4] | `- p:[0,1,3] c: [0,3] | `- p:[1] c: [1]) + Applied Processor: CloseWith True + Details: () YES