WORST_CASE(?, O(n^1)) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) eval_abc_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_abc_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_0(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_abc_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_1(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_abc_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_2(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_abc_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_3(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_abc_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_4(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_abc_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb1_in(Ar_0, Ar_1, Ar_0)) (Comp: ?, Cost: 1) eval_abc_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_2 <= Ar_1 ] (Comp: ?, Cost: 1) eval_abc_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_2 > Ar_1 ] (Comp: ?, Cost: 1) eval_abc_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb1_in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: ?, Cost: 1) eval_abc_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) eval_abc_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_0(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_3(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_4(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb1_in(Ar_0, Ar_1, Ar_0)) (Comp: ?, Cost: 1) eval_abc_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_2 <= Ar_1 ] (Comp: ?, Cost: 1) eval_abc_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_2 > Ar_1 ] (Comp: ?, Cost: 1) eval_abc_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb1_in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: ?, Cost: 1) eval_abc_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval_abc_start) = 2 Pol(eval_abc_bb0_in) = 2 Pol(eval_abc_0) = 2 Pol(eval_abc_1) = 2 Pol(eval_abc_2) = 2 Pol(eval_abc_3) = 2 Pol(eval_abc_4) = 2 Pol(eval_abc_bb1_in) = 2 Pol(eval_abc_bb2_in) = 2 Pol(eval_abc_bb3_in) = 1 Pol(eval_abc_stop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions eval_abc_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_stop(Ar_0, Ar_1, Ar_2)) eval_abc_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_2 > Ar_1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) eval_abc_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_0(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_3(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_4(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb1_in(Ar_0, Ar_1, Ar_0)) (Comp: ?, Cost: 1) eval_abc_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_2 <= Ar_1 ] (Comp: 2, Cost: 1) eval_abc_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_2 > Ar_1 ] (Comp: ?, Cost: 1) eval_abc_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb1_in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: 2, Cost: 1) eval_abc_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval_abc_start) = -2*V_1 + 2*V_2 + 2 Pol(eval_abc_bb0_in) = -2*V_1 + 2*V_2 + 2 Pol(eval_abc_0) = -2*V_1 + 2*V_2 + 2 Pol(eval_abc_1) = -2*V_1 + 2*V_2 + 2 Pol(eval_abc_2) = -2*V_1 + 2*V_2 + 2 Pol(eval_abc_3) = -2*V_1 + 2*V_2 + 2 Pol(eval_abc_4) = -2*V_1 + 2*V_2 + 2 Pol(eval_abc_bb1_in) = 2*V_2 - 2*V_3 + 2 Pol(eval_abc_bb2_in) = 2*V_2 - 2*V_3 + 1 Pol(eval_abc_bb3_in) = 2*V_2 - 2*V_3 + 2 Pol(eval_abc_stop) = 2*V_2 - 2*V_3 + 2 Pol(koat_start) = -2*V_1 + 2*V_2 + 2 orients all transitions weakly and the transition eval_abc_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_2 <= Ar_1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) eval_abc_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_0(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_3(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_4(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb1_in(Ar_0, Ar_1, Ar_0)) (Comp: 2*Ar_0 + 2*Ar_1 + 2, Cost: 1) eval_abc_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_2 <= Ar_1 ] (Comp: 2, Cost: 1) eval_abc_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_2 > Ar_1 ] (Comp: ?, Cost: 1) eval_abc_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb1_in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: 2, Cost: 1) eval_abc_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) eval_abc_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_0(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_3(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_4(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_abc_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb1_in(Ar_0, Ar_1, Ar_0)) (Comp: 2*Ar_0 + 2*Ar_1 + 2, Cost: 1) eval_abc_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_2 <= Ar_1 ] (Comp: 2, Cost: 1) eval_abc_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_2 > Ar_1 ] (Comp: 2*Ar_0 + 2*Ar_1 + 2, Cost: 1) eval_abc_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_bb1_in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: 2, Cost: 1) eval_abc_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_abc_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 4*Ar_0 + 4*Ar_1 + 15 Time: 0.663 sec (SMT: 0.642 sec)