WORST_CASE(?, O(n^1)) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) eval_start_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_0(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_1(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_2(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_3(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_4(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_5(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_5(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_2, 1, Ar_2)) (Comp: ?, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 > 0 ] (Comp: ?, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 <= 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0 - 1, 1, Ar_2)) [ Ar_0 > 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0, 1, Ar_2)) [ Ar_0 > 0 /\ Ar_0 <= 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0 - 1, 0, Ar_2)) [ Ar_0 <= 0 /\ Ar_0 > 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0, 0, Ar_2)) [ Ar_0 <= 0 ] (Comp: ?, Cost: 1) eval_start_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Testing for reachability in the complexity graph removes the following transitions from problem 1: eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0, 1, Ar_2)) [ Ar_0 > 0 /\ Ar_0 <= 0 ] eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0 - 1, 0, Ar_2)) [ Ar_0 <= 0 /\ Ar_0 > 0 ] We thus obtain the following problem: 2: T: (Comp: ?, Cost: 1) eval_start_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_stop(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 <= 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0, 0, Ar_2)) [ Ar_0 <= 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0 - 1, 1, Ar_2)) [ Ar_0 > 0 ] (Comp: ?, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 > 0 ] (Comp: ?, Cost: 1) eval_start_5(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_2, 1, Ar_2)) (Comp: ?, Cost: 1) eval_start_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_5(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_4(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_3(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_2(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_1(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_0(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: ?, Cost: 1) eval_start_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_stop(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 <= 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0, 0, Ar_2)) [ Ar_0 <= 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0 - 1, 1, Ar_2)) [ Ar_0 > 0 ] (Comp: ?, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 > 0 ] (Comp: 1, Cost: 1) eval_start_5(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_2, 1, Ar_2)) (Comp: 1, Cost: 1) eval_start_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_5(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_4(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_3(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_0(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval_start_bb3_in) = 1 Pol(eval_start_stop) = 0 Pol(eval_start_bb1_in) = 2 Pol(eval_start_bb2_in) = 2 Pol(eval_start_5) = 2 Pol(eval_start_4) = 2 Pol(eval_start_3) = 2 Pol(eval_start_2) = 2 Pol(eval_start_1) = 2 Pol(eval_start_0) = 2 Pol(eval_start_bb0_in) = 2 Pol(eval_start_start) = 2 Pol(koat_start) = 2 orients all transitions weakly and the transition eval_start_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_stop(Ar_0, Ar_1, Ar_2)) strictly and produces the following problem: 4: T: (Comp: 2, Cost: 1) eval_start_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_stop(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 <= 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0, 0, Ar_2)) [ Ar_0 <= 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0 - 1, 1, Ar_2)) [ Ar_0 > 0 ] (Comp: ?, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 > 0 ] (Comp: 1, Cost: 1) eval_start_5(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_2, 1, Ar_2)) (Comp: 1, Cost: 1) eval_start_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_5(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_4(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_3(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_0(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval_start_bb3_in) = 0 Pol(eval_start_stop) = 0 Pol(eval_start_bb1_in) = 1 Pol(eval_start_bb2_in) = 1 Pol(eval_start_5) = 1 Pol(eval_start_4) = 1 Pol(eval_start_3) = 1 Pol(eval_start_2) = 1 Pol(eval_start_1) = 1 Pol(eval_start_0) = 1 Pol(eval_start_bb0_in) = 1 Pol(eval_start_start) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 <= 0 ] strictly and produces the following problem: 5: T: (Comp: 2, Cost: 1) eval_start_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 <= 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0, 0, Ar_2)) [ Ar_0 <= 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0 - 1, 1, Ar_2)) [ Ar_0 > 0 ] (Comp: ?, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 > 0 ] (Comp: 1, Cost: 1) eval_start_5(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_2, 1, Ar_2)) (Comp: 1, Cost: 1) eval_start_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_5(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_4(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_3(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_0(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval_start_bb3_in) = V_2 Pol(eval_start_stop) = V_2 Pol(eval_start_bb1_in) = V_2 Pol(eval_start_bb2_in) = 1 Pol(eval_start_5) = 1 Pol(eval_start_4) = 1 Pol(eval_start_3) = 1 Pol(eval_start_2) = 1 Pol(eval_start_1) = 1 Pol(eval_start_0) = 1 Pol(eval_start_bb0_in) = 1 Pol(eval_start_start) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0, 0, Ar_2)) [ Ar_0 <= 0 ] strictly and produces the following problem: 6: T: (Comp: 2, Cost: 1) eval_start_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 <= 0 ] (Comp: 1, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0, 0, Ar_2)) [ Ar_0 <= 0 ] (Comp: ?, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0 - 1, 1, Ar_2)) [ Ar_0 > 0 ] (Comp: ?, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 > 0 ] (Comp: 1, Cost: 1) eval_start_5(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_2, 1, Ar_2)) (Comp: 1, Cost: 1) eval_start_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_5(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_4(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_3(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_0(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval_start_bb3_in) = 2*V_1 + V_2 Pol(eval_start_stop) = 2*V_1 + V_2 Pol(eval_start_bb1_in) = 2*V_1 + V_2 Pol(eval_start_bb2_in) = 2*V_1 Pol(eval_start_5) = 2*V_3 + 1 Pol(eval_start_4) = 2*V_3 + 1 Pol(eval_start_3) = 2*V_3 + 1 Pol(eval_start_2) = 2*V_3 + 1 Pol(eval_start_1) = 2*V_3 + 1 Pol(eval_start_0) = 2*V_3 + 1 Pol(eval_start_bb0_in) = 2*V_3 + 1 Pol(eval_start_start) = 2*V_3 + 1 Pol(koat_start) = 2*V_3 + 1 orients all transitions weakly and the transition eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0 - 1, 1, Ar_2)) [ Ar_0 > 0 ] strictly and produces the following problem: 7: T: (Comp: 2, Cost: 1) eval_start_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 <= 0 ] (Comp: 1, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0, 0, Ar_2)) [ Ar_0 <= 0 ] (Comp: 2*Ar_2 + 1, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0 - 1, 1, Ar_2)) [ Ar_0 > 0 ] (Comp: ?, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 > 0 ] (Comp: 1, Cost: 1) eval_start_5(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_2, 1, Ar_2)) (Comp: 1, Cost: 1) eval_start_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_5(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_4(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_3(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_0(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 7 produces the following problem: 8: T: (Comp: 2, Cost: 1) eval_start_bb3_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb3_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 <= 0 ] (Comp: 1, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0, 0, Ar_2)) [ Ar_0 <= 0 ] (Comp: 2*Ar_2 + 1, Cost: 1) eval_start_bb2_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_0 - 1, 1, Ar_2)) [ Ar_0 > 0 ] (Comp: 2*Ar_2 + 2, Cost: 1) eval_start_bb1_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb2_in(Ar_0, Ar_1, Ar_2)) [ Ar_1 > 0 ] (Comp: 1, Cost: 1) eval_start_5(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb1_in(Ar_2, 1, Ar_2)) (Comp: 1, Cost: 1) eval_start_4(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_5(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_3(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_4(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_2(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_3(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_1(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_0(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_bb0_in(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_0(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) eval_start_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_bb0_in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(eval_start_start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 4*Ar_2 + 15 Time: 1.056 sec (SMT: 1.014 sec)