WORST_CASE(?, O(n^1)) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f6(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f6(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_2 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f6(Ar_0 + 2, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_2 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f15(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f19(Ar_2 + 1, Ar_1, Ar_2, 1)) [ Ar_0 = Ar_2 + 1 ] (Comp: ?, Cost: 1) f15(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f19(Ar_0, Ar_1, Ar_2, 0)) [ Ar_2 >= Ar_0 ] (Comp: ?, Cost: 1) f15(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f19(Ar_0, Ar_1, Ar_2, 0)) [ Ar_0 >= Ar_2 + 2 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f15(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_2 /\ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f15(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 + 1 /\ Ar_1 >= Ar_2 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f19(Ar_0, Ar_1, Ar_0, 1)) [ Ar_1 >= Ar_2 /\ Ar_0 = Ar_2 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [Ar_0, Ar_1, Ar_2]. We thus obtain the following problem: 2: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_0)) [ Ar_1 >= Ar_2 /\ Ar_0 = Ar_2 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f15(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 1 /\ Ar_1 >= Ar_2 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f15(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 /\ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 2 ] (Comp: ?, Cost: 1) f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 ] (Comp: ?, Cost: 1) f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_2 + 1, Ar_1, Ar_2)) [ Ar_0 = Ar_2 + 1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0 + 2, Ar_1 + 1, Ar_2)) [ Ar_2 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_2 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f6(0, 0, Ar_2)) start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_0)) [ Ar_1 >= Ar_2 /\ Ar_0 = Ar_2 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f15(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 1 /\ Ar_1 >= Ar_2 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f15(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 /\ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 2 ] (Comp: ?, Cost: 1) f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 ] (Comp: ?, Cost: 1) f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_2 + 1, Ar_1, Ar_2)) [ Ar_0 = Ar_2 + 1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0 + 2, Ar_1 + 1, Ar_2)) [ Ar_2 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_2 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f6(0, 0, Ar_2)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 2 Pol(f0) = 2 Pol(f6) = 2 Pol(f19) = 0 Pol(f15) = 1 orients all transitions weakly and the transitions f6(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_0)) [ Ar_1 >= Ar_2 /\ Ar_0 = Ar_2 ] f6(Ar_0, Ar_1, Ar_2) -> Com_1(f15(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 /\ Ar_2 >= Ar_0 + 1 ] f6(Ar_0, Ar_1, Ar_2) -> Com_1(f15(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 1 /\ Ar_1 >= Ar_2 ] f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_2 + 1, Ar_1, Ar_2)) [ Ar_0 = Ar_2 + 1 ] f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 ] f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 2 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_0)) [ Ar_1 >= Ar_2 /\ Ar_0 = Ar_2 ] (Comp: 2, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f15(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 1 /\ Ar_1 >= Ar_2 ] (Comp: 2, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f15(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 /\ Ar_2 >= Ar_0 + 1 ] (Comp: 2, Cost: 1) f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 2 ] (Comp: 2, Cost: 1) f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 ] (Comp: 2, Cost: 1) f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_2 + 1, Ar_1, Ar_2)) [ Ar_0 = Ar_2 + 1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0 + 2, Ar_1 + 1, Ar_2)) [ Ar_2 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_2 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f6(0, 0, Ar_2)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = V_3 Pol(f0) = V_3 Pol(f6) = -V_2 + V_3 Pol(f19) = -V_2 + V_3 Pol(f15) = -V_2 + V_3 orients all transitions weakly and the transitions f6(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0 + 2, Ar_1 + 1, Ar_2)) [ Ar_2 >= Ar_1 + 1 ] f6(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_2 >= Ar_1 + 1 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_0)) [ Ar_1 >= Ar_2 /\ Ar_0 = Ar_2 ] (Comp: 2, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f15(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 1 /\ Ar_1 >= Ar_2 ] (Comp: 2, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f15(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 /\ Ar_2 >= Ar_0 + 1 ] (Comp: 2, Cost: 1) f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 2 ] (Comp: 2, Cost: 1) f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 ] (Comp: 2, Cost: 1) f15(Ar_0, Ar_1, Ar_2) -> Com_1(f19(Ar_2 + 1, Ar_1, Ar_2)) [ Ar_0 = Ar_2 + 1 ] (Comp: Ar_2, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0 + 2, Ar_1 + 1, Ar_2)) [ Ar_2 >= Ar_1 + 1 ] (Comp: Ar_2, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_2 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f6(0, 0, Ar_2)) start location: koat_start leaf cost: 0 Complexity upper bound 2*Ar_2 + 13 Time: 0.957 sec (SMT: 0.931 sec)