MAYBE Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0 - Ar_1, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ Ar_0 >= 0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ 0 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ Ar_1 >= 0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0 - Ar_1, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ Ar_0 >= 0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ 0 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ Ar_1 >= 0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f4) = 1 Pol(f6) = 0 Pol(f5) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ 0 >= Ar_0 + 1 ] strictly and produces the following problem: 3: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0 - Ar_1, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ Ar_0 >= 0 ] (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ 0 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ Ar_1 >= 0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 3 to obtain the following invariants: For symbol f4: -X_2 - 1 >= 0 This yielded the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ Ar_1 >= 0 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ -Ar_1 - 1 >= 0 /\ 0 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0 - Ar_1, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ -Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound ? Time: 1.782 sec (SMT: 1.727 sec)