WORST_CASE(?, O(1)) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f9(0, 0, Fresh_3, Ar_3, Ar_4, Ar_5, Ar_6)) (Comp: ?, Cost: 1) f9(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f10(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4, Ar_5, Ar_6)) [ 0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f10(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4, Ar_5, Ar_6)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f10(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f9(Ar_0 + 1, Ar_0 + 1, Fresh_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f28(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f16(Ar_0 + 1, Ar_1, Ar_2, Ar_3, Ar_0, Fresh_1, Fresh_1)) [ 9 >= Ar_0 /\ 0 >= Fresh_1 + 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f16(Ar_0 + 1, Ar_1, Ar_2, Ar_3, Ar_0, Fresh_0, Fresh_0)) [ 9 >= Ar_0 /\ Fresh_0 >= 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f28(Ar_0, Ar_1, Ar_2, Ar_3, Ar_0, 0, 0)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) f10(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f16(0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f16(0, Ar_1, 0, 0, Ar_4, Ar_5, Ar_6)) [ Ar_2 = 0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [Ar_0, Ar_2]. We thus obtain the following problem: 2: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_2) -> Com_1(f0(Ar_0, Ar_2)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f16(0, 0)) [ Ar_2 = 0 ] (Comp: ?, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f16(0, Ar_2)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ Fresh_0 >= 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ 0 >= Fresh_1 + 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f9(Ar_0 + 1, Fresh_2)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ 0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f9(0, Fresh_3)) start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_2) -> Com_1(f0(Ar_0, Ar_2)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f16(0, 0)) [ Ar_2 = 0 ] (Comp: ?, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f16(0, Ar_2)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ Fresh_0 >= 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ 0 >= Fresh_1 + 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f9(Ar_0 + 1, Fresh_2)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ 0 >= Ar_2 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f9(0, Fresh_3)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 2 Pol(f0) = 2 Pol(f9) = 2 Pol(f16) = 1 Pol(f10) = 2 Pol(f28) = 0 orients all transitions weakly and the transitions f9(Ar_0, Ar_2) -> Com_1(f16(0, 0)) [ Ar_2 = 0 ] f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ 9 >= Ar_0 ] f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ Ar_0 >= 10 ] f10(Ar_0, Ar_2) -> Com_1(f16(0, Ar_2)) [ Ar_0 >= 10 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_2) -> Com_1(f0(Ar_0, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f16(0, 0)) [ Ar_2 = 0 ] (Comp: 2, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f16(0, Ar_2)) [ Ar_0 >= 10 ] (Comp: 2, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ Fresh_0 >= 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ 0 >= Fresh_1 + 1 ] (Comp: 2, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f9(Ar_0 + 1, Fresh_2)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ 0 >= Ar_2 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f9(0, Fresh_3)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 19 Pol(f0) = 19 Pol(f9) = 19 Pol(f16) = -V_1 + 19 Pol(f10) = 19 Pol(f28) = -V_1 + 19 orients all transitions weakly and the transition f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ Fresh_0 >= 1 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_2) -> Com_1(f0(Ar_0, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f16(0, 0)) [ Ar_2 = 0 ] (Comp: 2, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f16(0, Ar_2)) [ Ar_0 >= 10 ] (Comp: 2, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ 9 >= Ar_0 ] (Comp: 19, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ Fresh_0 >= 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ 0 >= Fresh_1 + 1 ] (Comp: 2, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f9(Ar_0 + 1, Fresh_2)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ 0 >= Ar_2 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f9(0, Fresh_3)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 10 Pol(f0) = 10 Pol(f9) = 10 Pol(f16) = -V_1 + 10 Pol(f10) = 10 Pol(f28) = -V_1 + 10 orients all transitions weakly and the transition f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ 0 >= Fresh_1 + 1 ] strictly and produces the following problem: 6: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_2) -> Com_1(f0(Ar_0, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f16(0, 0)) [ Ar_2 = 0 ] (Comp: 2, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f16(0, Ar_2)) [ Ar_0 >= 10 ] (Comp: 2, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ 9 >= Ar_0 ] (Comp: 19, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ Fresh_0 >= 1 ] (Comp: 10, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ 0 >= Fresh_1 + 1 ] (Comp: 2, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f9(Ar_0 + 1, Fresh_2)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ 0 >= Ar_2 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f9(0, Fresh_3)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f9) = -2*V_1 + 20 Pol(f10) = -2*V_1 + 19 and size complexities S("f0(Ar_0, Ar_2) -> Com_1(f9(0, Fresh_3))", 0-0) = 0 S("f0(Ar_0, Ar_2) -> Com_1(f9(0, Fresh_3))", 0-1) = ? S("f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ 0 >= Ar_2 + 1 ]", 0-0) = 10 S("f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ 0 >= Ar_2 + 1 ]", 0-1) = ? S("f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ Ar_2 >= 1 ]", 0-0) = 10 S("f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ Ar_2 >= 1 ]", 0-1) = ? S("f10(Ar_0, Ar_2) -> Com_1(f9(Ar_0 + 1, Fresh_2)) [ 9 >= Ar_0 ]", 0-0) = 10 S("f10(Ar_0, Ar_2) -> Com_1(f9(Ar_0 + 1, Fresh_2)) [ 9 >= Ar_0 ]", 0-1) = ? S("f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ Ar_0 >= 10 ]", 0-0) = 10 S("f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ Ar_0 >= 10 ]", 0-1) = ? S("f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\\ 0 >= Fresh_1 + 1 ]", 0-0) = 10 S("f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\\ 0 >= Fresh_1 + 1 ]", 0-1) = ? S("f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\\ Fresh_0 >= 1 ]", 0-0) = 10 S("f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\\ Fresh_0 >= 1 ]", 0-1) = ? S("f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ 9 >= Ar_0 ]", 0-0) = 10 S("f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ 9 >= Ar_0 ]", 0-1) = ? S("f10(Ar_0, Ar_2) -> Com_1(f16(0, Ar_2)) [ Ar_0 >= 10 ]", 0-0) = 0 S("f10(Ar_0, Ar_2) -> Com_1(f16(0, Ar_2)) [ Ar_0 >= 10 ]", 0-1) = ? S("f9(Ar_0, Ar_2) -> Com_1(f16(0, 0)) [ Ar_2 = 0 ]", 0-0) = 0 S("f9(Ar_0, Ar_2) -> Com_1(f16(0, 0)) [ Ar_2 = 0 ]", 0-1) = 0 S("koat_start(Ar_0, Ar_2) -> Com_1(f0(Ar_0, Ar_2)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_2) -> Com_1(f0(Ar_0, Ar_2)) [ 0 <= 0 ]", 0-1) = Ar_2 orients the transitions f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ Ar_2 >= 1 ] f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ 0 >= Ar_2 + 1 ] f10(Ar_0, Ar_2) -> Com_1(f9(Ar_0 + 1, Fresh_2)) [ 9 >= Ar_0 ] weakly and the transition f10(Ar_0, Ar_2) -> Com_1(f9(Ar_0 + 1, Fresh_2)) [ 9 >= Ar_0 ] strictly and produces the following problem: 7: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_2) -> Com_1(f0(Ar_0, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f16(0, 0)) [ Ar_2 = 0 ] (Comp: 2, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f16(0, Ar_2)) [ Ar_0 >= 10 ] (Comp: 2, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ 9 >= Ar_0 ] (Comp: 19, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ Fresh_0 >= 1 ] (Comp: 10, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ 0 >= Fresh_1 + 1 ] (Comp: 2, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ Ar_0 >= 10 ] (Comp: 20, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f9(Ar_0 + 1, Fresh_2)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ 0 >= Ar_2 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f9(0, Fresh_3)) start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 7 produces the following problem: 8: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_2) -> Com_1(f0(Ar_0, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f16(0, 0)) [ Ar_2 = 0 ] (Comp: 2, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f16(0, Ar_2)) [ Ar_0 >= 10 ] (Comp: 2, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ 9 >= Ar_0 ] (Comp: 19, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ Fresh_0 >= 1 ] (Comp: 10, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f16(Ar_0 + 1, Ar_2)) [ 9 >= Ar_0 /\ 0 >= Fresh_1 + 1 ] (Comp: 2, Cost: 1) f16(Ar_0, Ar_2) -> Com_1(f28(Ar_0, Ar_2)) [ Ar_0 >= 10 ] (Comp: 20, Cost: 1) f10(Ar_0, Ar_2) -> Com_1(f9(Ar_0 + 1, Fresh_2)) [ 9 >= Ar_0 ] (Comp: 21, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ Ar_2 >= 1 ] (Comp: 21, Cost: 1) f9(Ar_0, Ar_2) -> Com_1(f10(Ar_0, Ar_2)) [ 0 >= Ar_2 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f9(0, Fresh_3)) start location: koat_start leaf cost: 0 Complexity upper bound 100 Time: 1.182 sec (SMT: 1.141 sec)