MAYBE Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10) -> Com_1(f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10)) (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10) -> Com_1(f12(Fresh_3, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10)) [ 15 >= L ] (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10) -> Com_1(f20(Ar_0, Fresh_2, Fresh_2, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10)) [ 0 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10) -> Com_1(f20(Ar_0, Fresh_1, Fresh_1, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10) -> Com_1(f5(Ar_0, Ar_1, Ar_2, 1, 1, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10)) [ 15 >= M ] (Comp: ?, Cost: 1) f20(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10) -> Com_1(f12(Ar_0 - 1, Ar_1, Ar_2, Ar_3, Ar_4, 0, 0, Ar_7, Ar_8, Ar_9, Ar_10)) (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10) -> Com_1(f5(0, Ar_1, Ar_2, 0, 0, Ar_5, Ar_6, Fresh_0, Fresh_0, 0, 0)) [ Ar_0 = 0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6, Ar_7, Ar_8, Ar_9, Ar_10)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [Ar_0]. We thus obtain the following problem: 2: T: (Comp: 1, Cost: 0) koat_start(Ar_0) -> Com_1(f0(Ar_0)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f12(Ar_0) -> Com_1(f5(0)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f20(Ar_0) -> Com_1(f12(Ar_0 - 1)) (Comp: ?, Cost: 1) f0(Ar_0) -> Com_1(f5(Ar_0)) [ 15 >= M ] (Comp: ?, Cost: 1) f12(Ar_0) -> Com_1(f20(Ar_0)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f12(Ar_0) -> Com_1(f20(Ar_0)) [ 0 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0) -> Com_1(f12(Fresh_3)) [ 15 >= L ] (Comp: ?, Cost: 1) f0(Ar_0) -> Com_1(f5(Ar_0)) start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: 1, Cost: 0) koat_start(Ar_0) -> Com_1(f0(Ar_0)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f12(Ar_0) -> Com_1(f5(0)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f20(Ar_0) -> Com_1(f12(Ar_0 - 1)) (Comp: 1, Cost: 1) f0(Ar_0) -> Com_1(f5(Ar_0)) [ 15 >= M ] (Comp: ?, Cost: 1) f12(Ar_0) -> Com_1(f20(Ar_0)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f12(Ar_0) -> Com_1(f20(Ar_0)) [ 0 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0) -> Com_1(f12(Fresh_3)) [ 15 >= L ] (Comp: 1, Cost: 1) f0(Ar_0) -> Com_1(f5(Ar_0)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 1 Pol(f0) = 1 Pol(f12) = 1 Pol(f5) = 0 Pol(f20) = 1 orients all transitions weakly and the transition f12(Ar_0) -> Com_1(f5(0)) [ Ar_0 = 0 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0) -> Com_1(f0(Ar_0)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f12(Ar_0) -> Com_1(f5(0)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f20(Ar_0) -> Com_1(f12(Ar_0 - 1)) (Comp: 1, Cost: 1) f0(Ar_0) -> Com_1(f5(Ar_0)) [ 15 >= M ] (Comp: ?, Cost: 1) f12(Ar_0) -> Com_1(f20(Ar_0)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f12(Ar_0) -> Com_1(f20(Ar_0)) [ 0 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0) -> Com_1(f12(Fresh_3)) [ 15 >= L ] (Comp: 1, Cost: 1) f0(Ar_0) -> Com_1(f5(Ar_0)) start location: koat_start leaf cost: 0 Complexity upper bound ? Time: 0.614 sec (SMT: 0.582 sec)