MAYBE Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(8, 0, 14, -1, Ar_4, Ar_5, Ar_6)) (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f12(Ar_0, Ar_1, Ar_2, Ar_3, Fresh_3, Ar_5, Ar_6)) [ Ar_2 >= Ar_1 /\ Ar_0 >= H + 1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f12(Ar_0, Ar_1, Ar_2, Ar_3, Fresh_2, Ar_5, Ar_6)) [ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, Ar_1 - 1, Fresh_0, Fresh_1, Ar_5, Ar_6)) [ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, Ar_4 - 1, Ar_3, Ar_4, Ar_5, Ar_6)) (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_4 + 1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f20(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_3, Ar_3)) [ Ar_1 >= Ar_2 + 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [Ar_0, Ar_1, Ar_2, Ar_4]. We thus obtain the following problem: 2: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_4)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f20(Ar_0, Ar_1, Ar_2, Ar_4)) [ Ar_1 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(Ar_0, Ar_4 + 1, Ar_2, Ar_4)) (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(Ar_0, Ar_1, Ar_4 - 1, Ar_4)) (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(Ar_0, Ar_1, Ar_1 - 1, Fresh_1)) [ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f12(Ar_0, Ar_1, Ar_2, Fresh_2)) [ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f12(Ar_0, Ar_1, Ar_2, Fresh_3)) [ Ar_2 >= Ar_1 /\ Ar_0 >= H + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(8, 0, 14, Ar_4)) start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_4)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f20(Ar_0, Ar_1, Ar_2, Ar_4)) [ Ar_1 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(Ar_0, Ar_4 + 1, Ar_2, Ar_4)) (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(Ar_0, Ar_1, Ar_4 - 1, Ar_4)) (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(Ar_0, Ar_1, Ar_1 - 1, Fresh_1)) [ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f12(Ar_0, Ar_1, Ar_2, Fresh_2)) [ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f12(Ar_0, Ar_1, Ar_2, Fresh_3)) [ Ar_2 >= Ar_1 /\ Ar_0 >= H + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(8, 0, 14, Ar_4)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 1 Pol(f0) = 1 Pol(f6) = 1 Pol(f20) = 0 Pol(f12) = 1 orients all transitions weakly and the transition f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f20(Ar_0, Ar_1, Ar_2, Ar_4)) [ Ar_1 >= Ar_2 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_4)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f20(Ar_0, Ar_1, Ar_2, Ar_4)) [ Ar_1 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(Ar_0, Ar_4 + 1, Ar_2, Ar_4)) (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(Ar_0, Ar_1, Ar_4 - 1, Ar_4)) (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(Ar_0, Ar_1, Ar_1 - 1, Fresh_1)) [ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f12(Ar_0, Ar_1, Ar_2, Fresh_2)) [ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f12(Ar_0, Ar_1, Ar_2, Fresh_3)) [ Ar_2 >= Ar_1 /\ Ar_0 >= H + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(8, 0, 14, Ar_4)) start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 4 to obtain the following invariants: For symbol f12: -X_2 + X_3 >= 0 /\ -X_1 + 8 >= 0 /\ X_1 - 8 >= 0 For symbol f6: -X_1 + 8 >= 0 /\ X_1 - 8 >= 0 This yielded the following problem: 5: T: (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(8, 0, 14, Ar_4)) (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f12(Ar_0, Ar_1, Ar_2, Fresh_3)) [ -Ar_0 + 8 >= 0 /\ Ar_0 - 8 >= 0 /\ Ar_2 >= Ar_1 /\ Ar_0 >= H + 1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f12(Ar_0, Ar_1, Ar_2, Fresh_2)) [ -Ar_0 + 8 >= 0 /\ Ar_0 - 8 >= 0 /\ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(Ar_0, Ar_1, Ar_1 - 1, Fresh_1)) [ -Ar_0 + 8 >= 0 /\ Ar_0 - 8 >= 0 /\ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(Ar_0, Ar_1, Ar_4 - 1, Ar_4)) [ -Ar_1 + Ar_2 >= 0 /\ -Ar_0 + 8 >= 0 /\ Ar_0 - 8 >= 0 ] (Comp: ?, Cost: 1) f12(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f6(Ar_0, Ar_4 + 1, Ar_2, Ar_4)) [ -Ar_1 + Ar_2 >= 0 /\ -Ar_0 + 8 >= 0 /\ Ar_0 - 8 >= 0 ] (Comp: 1, Cost: 1) f6(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f20(Ar_0, Ar_1, Ar_2, Ar_4)) [ -Ar_0 + 8 >= 0 /\ Ar_0 - 8 >= 0 /\ Ar_1 >= Ar_2 + 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound ? Time: 2.474 sec (SMT: 2.400 sec)