WORST_CASE(?, O(n^2)) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) eval1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= 2 ] (Comp: ?, Cost: 1) eval1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_2, Ar_3)) [ 1 >= Ar_0 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, Ar_0, 2*Ar_0)) [ Ar_1 >= 2 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_2, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, Ar_3, 2*Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, Ar_3 + 1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, Ar_3, 2*Ar_3)) [ Ar_3 >= 1 /\ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval4(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= 2 /\ Ar_0 >= 1 /\ Ar_1 >= 2 ] (Comp: ?, Cost: 1) eval4(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_2, Ar_3)) [ Ar_1 >= 2 /\ Ar_0 = 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [Ar_0, Ar_1, Ar_3]. We thus obtain the following problem: 2: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ] (Comp: ?, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\ Ar_0 = 1 ] (Comp: ?, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\ Ar_0 >= 1 /\ Ar_1 >= 2 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ] (Comp: ?, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ] (Comp: ?, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ] (Comp: ?, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\ Ar_0 = 1 ] (Comp: ?, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\ Ar_0 >= 1 /\ Ar_1 >= 2 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = V_2 + 1 Pol(eval1) = V_2 + 1 Pol(eval4) = V_2 + 1 Pol(eval2) = V_2 + 1 Pol(eval3) = V_2 + 1 orients all transitions weakly and the transition eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\ Ar_0 = 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ] (Comp: Ar_1 + 1, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\ Ar_0 = 1 ] (Comp: ?, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\ Ar_0 >= 1 /\ Ar_1 >= 2 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = V_1 + 1 Pol(eval1) = V_1 + 1 Pol(eval4) = V_1 + 1 Pol(eval2) = V_1 + 1 Pol(eval3) = V_1 + 1 orients all transitions weakly and the transition eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\ Ar_0 >= 1 /\ Ar_1 >= 2 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ] (Comp: Ar_1 + 1, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\ Ar_0 = 1 ] (Comp: Ar_0 + 1, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\ Ar_0 >= 1 /\ Ar_1 >= 2 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 5 produces the following problem: 6: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ] (Comp: Ar_1 + 1, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\ Ar_0 = 1 ] (Comp: Ar_0 + 1, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\ Ar_0 >= 1 /\ Ar_1 >= 2 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval3) = 1 Pol(eval4) = 0 and size complexities S("eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ]", 0-0) = Ar_0 S("eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ]", 0-1) = Ar_1 S("eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ]", 0-2) = Ar_3 S("eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ]", 0-0) = Ar_0 S("eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ]", 0-1) = Ar_1 + 1 S("eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ]", 0-2) = Ar_3 S("eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ]", 0-0) = Ar_0 + 1 S("eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ]", 0-1) = Ar_1 + 1 S("eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ]", 0-2) = 2*Ar_0 + 8 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 ]", 0-0) = Ar_0 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 ]", 0-1) = Ar_1 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 ]", 0-2) = ? S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 ]", 0-0) = Ar_0 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 ]", 0-1) = Ar_1 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 ]", 0-2) = ? S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 /\\ Ar_3 >= 1 ]", 0-0) = Ar_0 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 /\\ Ar_3 >= 1 ]", 0-1) = Ar_1 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 /\\ Ar_3 >= 1 ]", 0-2) = ? S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 /\\ Ar_3 >= 1 ]", 0-0) = Ar_0 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 /\\ Ar_3 >= 1 ]", 0-1) = Ar_1 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 /\\ Ar_3 >= 1 ]", 0-2) = ? S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ]", 0-0) = Ar_0 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ]", 0-1) = Ar_1 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ]", 0-2) = ? S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\\ Ar_1 = Ar_3 ]", 0-0) = Ar_0 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\\ Ar_1 = Ar_3 ]", 0-1) = Ar_1 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\\ Ar_1 = Ar_3 ]", 0-2) = ? S("eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\\ Ar_0 >= 1 /\\ Ar_1 >= 2 ]", 0-0) = Ar_0 + 1 S("eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\\ Ar_0 >= 1 /\\ Ar_1 >= 2 ]", 0-1) = Ar_1 + 1 S("eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\\ Ar_0 >= 1 /\\ Ar_1 >= 2 ]", 0-2) = ? S("eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\\ Ar_0 = 1 ]", 0-0) = 1 S("eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\\ Ar_0 = 1 ]", 0-1) = Ar_1 + 1 S("eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\\ Ar_0 = 1 ]", 0-2) = ? S("koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ]", 0-1) = Ar_1 S("koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ]", 0-2) = Ar_3 orients the transitions eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ] eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\ Ar_1 = Ar_3 ] weakly and the transitions eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ] strictly and produces the following problem: 7: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ] (Comp: Ar_1 + 1, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\ Ar_0 = 1 ] (Comp: Ar_0 + 1, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\ Ar_0 >= 1 /\ Ar_1 >= 2 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\ Ar_1 = Ar_3 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval3) = V_2 - V_3 + 1 and size complexities S("eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ]", 0-0) = Ar_0 S("eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ]", 0-1) = Ar_1 S("eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ]", 0-2) = Ar_3 S("eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ]", 0-0) = Ar_0 S("eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ]", 0-1) = Ar_1 + 1 S("eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ]", 0-2) = Ar_3 S("eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ]", 0-0) = Ar_0 + 1 S("eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ]", 0-1) = Ar_1 + 1 S("eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ]", 0-2) = 2*Ar_0 + 8 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 ]", 0-0) = Ar_0 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 ]", 0-1) = Ar_1 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 ]", 0-2) = ? S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 ]", 0-0) = Ar_0 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 ]", 0-1) = Ar_1 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 ]", 0-2) = ? S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 /\\ Ar_3 >= 1 ]", 0-0) = Ar_0 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 /\\ Ar_3 >= 1 ]", 0-1) = Ar_1 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 /\\ Ar_3 >= 1 ]", 0-2) = ? S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 /\\ Ar_3 >= 1 ]", 0-0) = Ar_0 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 /\\ Ar_3 >= 1 ]", 0-1) = Ar_1 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\\ Ar_1 >= Ar_3 + 1 /\\ Ar_3 >= 1 ]", 0-2) = ? S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ]", 0-0) = Ar_0 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ]", 0-1) = Ar_1 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ]", 0-2) = ? S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\\ Ar_1 = Ar_3 ]", 0-0) = Ar_0 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\\ Ar_1 = Ar_3 ]", 0-1) = Ar_1 + 1 S("eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\\ Ar_1 = Ar_3 ]", 0-2) = ? S("eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\\ Ar_0 >= 1 /\\ Ar_1 >= 2 ]", 0-0) = Ar_0 + 1 S("eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\\ Ar_0 >= 1 /\\ Ar_1 >= 2 ]", 0-1) = Ar_1 + 1 S("eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\\ Ar_0 >= 1 /\\ Ar_1 >= 2 ]", 0-2) = ? S("eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\\ Ar_0 = 1 ]", 0-0) = 1 S("eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\\ Ar_0 = 1 ]", 0-1) = Ar_1 + 1 S("eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\\ Ar_0 = 1 ]", 0-2) = ? S("koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ]", 0-1) = Ar_1 S("koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ]", 0-2) = Ar_3 orients the transitions eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\ Ar_1 = Ar_3 ] weakly and the transitions eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] strictly and produces the following problem: 8: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ] (Comp: Ar_1 + 1, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\ Ar_0 = 1 ] (Comp: Ar_0 + 1, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\ Ar_0 >= 1 /\ Ar_1 >= 2 ] (Comp: ?, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\ Ar_1 = Ar_3 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ] (Comp: 3*Ar_0*Ar_1 + Ar_1^2 + 2*Ar_0^2 + 14*Ar_1 + 18*Ar_0 + 40, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: 3*Ar_0*Ar_1 + Ar_1^2 + 2*Ar_0^2 + 14*Ar_1 + 18*Ar_0 + 40, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 8 produces the following problem: 9: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_3) -> Com_1(eval1(Ar_0, Ar_1, Ar_3)) [ 0 <= 0 ] (Comp: Ar_1 + 1, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ Ar_1 >= 2 /\ Ar_0 = 1 ] (Comp: Ar_0 + 1, Cost: 1) eval4(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 /\ Ar_0 >= 1 /\ Ar_1 >= 2 ] (Comp: 37*Ar_0 + 29*Ar_1 + 6*Ar_0*Ar_1 + 2*Ar_1^2 + 4*Ar_0^2 + 84, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_3 >= 1 /\ Ar_1 = Ar_3 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 = Ar_3 ] (Comp: 3*Ar_0*Ar_1 + Ar_1^2 + 2*Ar_0^2 + 14*Ar_1 + 18*Ar_0 + 40, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3 + 2)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: 3*Ar_0*Ar_1 + Ar_1^2 + 2*Ar_0^2 + 14*Ar_1 + 18*Ar_0 + 40, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 /\ Ar_3 >= 1 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3 + 1)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval3(Ar_0, Ar_1, Ar_3) -> Com_1(eval4(Ar_0, Ar_1, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_1 >= Ar_3 + 1 ] (Comp: Ar_0 + Ar_1 + 4, Cost: 1) eval2(Ar_0, Ar_1, Ar_3) -> Com_1(eval3(Ar_0, Ar_1, 2*Ar_0)) [ Ar_1 >= 2 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0, Ar_1 - 1, Ar_3)) [ 1 >= Ar_0 ] (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_3) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_3)) [ Ar_0 >= 2 ] start location: koat_start leaf cost: 0 Complexity upper bound 62*Ar_1 + 78*Ar_0 + 12*Ar_0*Ar_1 + 4*Ar_1^2 + 8*Ar_0^2 + 184 Time: 2.844 sec (SMT: 2.763 sec)