YES(?,O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { cons_x[1](x2, x1) -> Cons(x2, x1) , comp_f_g[1](cons_x(x3), cons_x(x2), x1) -> cons_x[1](x3, cons_x[1](x2, x1)) , comp_f_g[1](cons_x(x4), comp_f_g(x3, x2), x1) -> cons_x[1](x4, comp_f_g[1](x3, x2, x1)) , comp_f_g[1](comp_f_g(x4, x3), cons_x(x2), x1) -> comp_f_g[1](x4, x3, cons_x[1](x2, x1)) , comp_f_g[1](comp_f_g(x5, x4), comp_f_g(x3, x2), x1) -> comp_f_g[1](x5, x4, comp_f_g[1](x3, x2, x1)) , rec[walk_0][1](Leaf(x1)) -> cons_x(x1) , rec[walk_0][1](Node(x2, x1)) -> comp_f_g(rec[walk_0][1](x2), rec[walk_0][1](x1)) , main(Leaf(x2)) -> cons_x[1](x2, Nil()) , main(Node(x4, x2)) -> comp_f_g[1](rec[walk_0][1](x4), rec[walk_0][1](x2), Nil()) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The problem is match-bounded by 3. The enriched problem is compatible with the following automaton. { cons_x[1]_0(2, 2) -> 1 , cons_x[1]_1(2, 2) -> 3 , cons_x[1]_1(2, 3) -> 1 , cons_x[1]_1(2, 3) -> 3 , cons_x[1]_2(2, 3) -> 6 , cons_x[1]_2(2, 6) -> 1 , cons_x[1]_2(2, 6) -> 6 , Cons_0(2, 2) -> 2 , Cons_1(2, 2) -> 1 , Cons_2(2, 2) -> 3 , Cons_2(2, 3) -> 1 , Cons_2(2, 3) -> 3 , Cons_3(2, 3) -> 6 , Cons_3(2, 6) -> 1 , Cons_3(2, 6) -> 6 , cons_x_0(2) -> 2 , cons_x_1(2) -> 1 , cons_x_1(2) -> 4 , cons_x_1(2) -> 5 , comp_f_g_0(2, 2) -> 2 , comp_f_g_1(4, 5) -> 1 , comp_f_g_1(5, 5) -> 4 , comp_f_g_1(5, 5) -> 5 , comp_f_g[1]_0(2, 2, 2) -> 1 , comp_f_g[1]_1(2, 2, 2) -> 3 , comp_f_g[1]_1(2, 2, 3) -> 1 , comp_f_g[1]_1(2, 2, 3) -> 3 , comp_f_g[1]_1(5, 5, 3) -> 1 , comp_f_g[1]_2(5, 5, 3) -> 6 , comp_f_g[1]_2(5, 5, 6) -> 1 , comp_f_g[1]_2(5, 5, 6) -> 6 , Leaf_0(2) -> 2 , rec[walk_0][1]_0(2) -> 1 , rec[walk_0][1]_1(2) -> 4 , rec[walk_0][1]_1(2) -> 5 , Node_0(2, 2) -> 2 , main_0(2) -> 1 , Nil_0() -> 2 , Nil_1() -> 3 } Hurray, we answered YES(?,O(n^1))