ogic

The Epsilon Theorems: Simple Things Made Simple

“In the e-calculus it is hard to understand anything”
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What is the Epsilon Calculus?

Definition
e the e-calculus is a formalisation of logic without quantifiers but
with the e-operator
e if A(x) is a formula, then £,A(x) is an e-term
e &, A(x) is an indefinite description:
£xA(x) is some x for which A(x) is true
e ccanreplace 31 Ix A(x) & A(exA(x))
e axioms of e-calculus:
propositional tautologies

identity schemata
A(t) = A(exA(x))
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What is the Epsilon Calculus?

Definition
e the e-calculus is a formalisation of logic without quantifiers but
with the e-operator
e if A(x) is a formula, then £,A(x) is an e-term
e &, A(x) is an indefinite description:
£xA(x) is some x for which A(x) is true
e ccanreplace 31 Ix A(x) & A(exA(x))
e axioms of e-calculus:
propositional tautologies
identity-schemata (this talk)
A(t) = A(exA(x))

predicate logic can be embedded in the e-calculus

GM (ICS @ UIBK) WENPS, December 16, 2015


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

S
Why Should You Care?

GM (ICS @ UIBK) WENPS, December 16, 2015


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

S
Why Should You Care?

basis of proof theory

GM (ICS @ UIBK) WENPS, December 16, 2015


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

S
Why Should You Care?

basis of proof theory

interesting logical formalism
o trade logical structure for term structure, that is, e-calculus embodies
deep inference ©
e formalisation of choice; recognised in its use in proof assistants
o full potential TCS yet unexplored
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Why Should You Care?

basis of proof theory

interesting logical formalism

o trade logical structure for term structure, that is, e-calculus embodies
deep inference ©

e formalisation of choice; recognised in its use in proof assistants

o full potential TCS yet unexplored

foundation of noteworthy proof-theoretic results

o e-theorems and Herbrand's theorem (this talk)
e e-substitution method and its connection to learning (Tom's talk)
o Kreisel's no-counter example interpretation

you asked for it ©:

| asked some of the others about the topics you proposed and
there seemed to be a slight preference for epsilon calculus |[...]
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The Embedding Lemma

@ The First Epsilon Theorem

Lower Bounds

The Second Epsilon Theorem
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Axioms of the Epsilon Calculus
Definition
o AxEC: all substitution instances of propositional tautologies

e AxEC.: AxEC + all substitution instances of

A(t) = A(exA(x))

J

critical formula

e AxPC: AxEC + all substitution instances of

A(a) — Ix A(x) Vx A(x) — A(a)

o AxPC.: AxPC + all substitution instances of critical formulas
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Definition
e a proof in EC (EC.) is a sequence A, ..., A, of formulas such that

each A; is either in AXEC (AxEC.) or it follows from formulas
preceding it by modus ponens

e a proof in PC (PC.) is a sequence Ay, ..., A, of formulas such that
each A; is either in AxPC (AxPC.) or follows from formulas

preceding it by modus ponens or generalisation

e if Ais provable in say EC. we write EC. -, A
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Definition
e a proof in EC (EC.) is a sequence A, ..., A, of formulas such that
each A; is either in AXEC (AxEC.) or it follows from formulas
preceding it by modus ponens

e a proof in PC (PC,) is a sequence Ay, ..., A, of formulas such that
each A; is either in AxPC (AxPC.) or follows from formulas
preceding it by modus ponens or generalisation

e if Ais provable in say EC. we write EC. -, A

e the size sz(m) of a proof 7 is the number of steps in 7

e the critical count cc(m) of 7 is the number of distinct critical
formulas and quantifier axioms in 7 (plus 1)
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Definition (tentative)

quantifiers in a quantifier-free system:
Ix A(x) & A(exA(x)) Vx A(x) & A(ex—A(x))
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The Embedding Lemma

Definition (tentative)

quantifiers in a quantifier-free system:
Ix A(x) & A(exA(x)) Vx A(x) & A(ex—A(x))

Definition
define a mapping ©:
f(te, ..., tn)° =1f(t,....t;)
X=X [exA(x)]" =exA(x)"

a=a

GM (ICS @ UIBK) WENPS, December 16, 2015


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Embedding Lemma

Definition (tentative)

quantifiers in a quantifier-free system:
Ix A(x) & A(exA(x)) Vx A(x) & A(ex—A(x))

Definition
define a mapping ©:
f(te, ..., tn)° =1f(t,....t;) P(ti, ..., ty)" = P(t],....t;)
X=X [exA(x)]" =exA(x)"

a=a

GM (ICS @ UIBK) WENPS, December 16, 2015


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Definition (tentative)
quantifiers in a quantifier-free system:

Ix A(x) & A(exA(x)) Vx A(x) & A(ex—A(x))

Definition
define a mapping ©:

f(te, ..., tn)° =1f(t,....t;) P(ti, ..., ty)" = P(t],....t;)
x°=x (A= B =A° = B [exAX)]" =exA(x)"
aF=a (AVB)y=A°V B°
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Definition (tentative)
quantifiers in a quantifier-free system:

Ix A(x) & A(exA(x)) Vx A(x) & A(ex—A(x))

Definition
define a mapping ©:
f(te, ..., tn)° =1f(t,....t;) P(ti,..., tn)
X =x (A= B)F=A° = B°  [e A(X)]" =exA(x)°
a=a (AVB)=A"v B® (IxA(x))" =A% (exA(x))
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The Embedding Lemma

Definition (tentative)

quantifiers in a quantifier-free system:

Ix A(x) & A(exA(x)) Vx A(x) & A(ex—A(x))

Definition
define a mapping ©:
f(te, ..., tn)° =1f(t,....t;) P(ti,..., tn)
X =x (A= B)F=A° = B°  [e A(X)]" =exA(x)°
a=a (AVB)=A"v B® (IxA(x))" =A% (exA(x))
(mA)F=-A" (AAB) =A"AB  (VxA(x)) =A (exA(x))

Lemma

if m is a PC.-proof of A then there is an EC.-proof ¢ of A® with
sz(m®) < 3-sz(m) and cc(n®) < ce(m)
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Example: Epsilon Mapping

Example

[Bx(P(x) Vv ¥y Q) =
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Example: Epsilon Mapping

Example

[Bx(P(x) Vv ¥y Q) =
= [PV Q)" {x = alP(x) v Vy Qy)"}
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Example: Epsilon Mapping

Example

Bx(P(x) v Yy QW) =
= [PV QU {x = ex[P(x) vy Q(y)I}
[P(x) v ¥y QIy)I" = P(x) V Q(gy~R(y))
~——

€1
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The Embedding Lemma

Example: Epsilon Mapping

Example

[Bx(P(x)

vy Q) =

[PO) VY Q)T {x < ex[P(x) VVy Qy)]"}
[P(x) v ¥y QIy)I" = P(x) V Q(gy~R(y))
~——

P(x)V Q(ey=Q(y)) {x « &x[P(x) V Q(g,~R(Y))I}

€1

€1

€1

—~~
€2
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The Embedding Lemma

Example: Epsilon Mapping

Example

[Bx(P(x)

vy Q) =

[PO) VY Q)T {x < ex[P(x) VVy Qy)]"}
[P(x) v ¥y QIy)I" = P(x) V Q(gy~R(y))
~——

P(x)V Q(ey=Q(y)) {x « &x[P(x) V Q(g,~R(Y))I}

€1

P(ex[P(x) V Q(e,~Q(y))]) v Q(ey~Q(y))

€1

J/

~~
€2

€1

€1

€1

-~

€2
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The Embedding Lemma

Drinker's Paradox (Yet Again)
Example
P(a) = P(a)
P(a) = P(a),VyP(y)
= P(a) — VyP(y), P(a)
= 3x(P(x) — VYyP(y)), P(a)
= Ix(P(x) = VyP(y)), VyP(y)
P(b) = 3x(P(x) = YyP(y)), VyP(y)
= 3Ix(P(x) — YyP(y)), P(b) — VyP(y)

= 3Ix(P(x) = VyP(y)), Ix(P(x) = VyP(y))

= Ix(P(x) = VyP(y))
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The Embedding Lemma

Drinker's Paradox (Yet Again)
Example
P(a) = P(a)
P(a) = P(a),VyP(y)
= P(a) — YyP(y), P(a)
= 3Ix(P(x) — VYyP(y)), P(a)
= Ix(P(x) = VyP(y)),YyP(y)
P(b) = 3x(P(x) — VyP(y)), VyP(y)
= Ix(P(x) = VyP(y)), P(b) = VyP(y)
= 3Ix(P(x) = VyP(y)), Ix(P(x) = VyP(y))
= P(e) = P(e,~P(y))

where we employ
[VyP(y)I" = P(ey,=P(y))
[3x(P(x) = VyP(y)]" = P(ex(P(x) = P(ey,~P(y)))) = P(e,~P(y))

€
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= P(e) = P(ey~P(¥)), VyP(y)
P(b) = P(e) =+ P(e,~P(y)), YyP(y)
= P(e) = P(ey~P(y)), P(b) = VyP(y)
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= P(e) = P(e,~P(y))

where we employ
[VyP()I* = P(ey=P(y))
[Fx(P(x) = VyP(y)]® = P(ex(P(x) = P(e,~P(y)))) = P(e,~P(y))
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The Embedding Lemma

Drinker's Paradox (Yet Again)
Example
P(a) = P(a)
P(a) = P(a), P(s,~P(y))
= P(a) = P(e,—~P(y)), P(a)
= P(e) — P(e,—~P(y)), P(a)
= P(e) = P(ey~P(y)), P(ey~P(y))
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The Embedding Lemma

Drinker's Paradox (Yet Again)
Example

P(ey~P(y)) = P(ey=P(y))
P(ey=P(y)) = P(ey=P(y)), P(e,~P(y))
= P(e,~P(y)) = P(ey,=P(y)), P(y,=P(y))
= P(e) = P(ey=P(y)), P(ey~P(y))
= P(e) = P(ey=P(y)), P(ey~P(y))
P(e) = P(e) = P(ey—=P(y)), P(e,~P(y))
= P(e) = P(ey=P(y)), P(e) = P(ey=P(y))
= P(e) = P(ey=P(y)), P(¢) = P(e,=P(y))
= P(e) = P(e,~P(y))

where we employ

[P(ey=P(y)) = P(ey=P(y))] = [P(ex(P(x) = P(e,=P(y)))) = P(e,~P(y))]
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The Embedding Lemma

Drinker's Paradox (a la Michel Parigot)

Example (cont'd)
1 P(ey=P(y)) — P(ey—=P(y))
2 (P(ey=P(y)) = P(ey=P(y))) —

— (P(ex(P(x) = P(ey—P(y))))) = P(ey—P(y))) critical axiom
3 P(ex(P(x) = P(ey=P(y))))) = P(ey~P(y)) 1,2, MP

TAUT
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The Embedding Lemma

Drinker's Paradox (a la Michel Parigot)

Example (cont'd)

1 P(ey=P(y)) = P(ey=P(y))

2 (P(ey=P(y)) = P(ey=P(y))) —
— (P(ex(P(x) = P(ey—P(y))))) = P(ey—P(y))) critical axiom

3 Plex(P(x) = P(ey=P(y))))) = P(ey=P(y)) 1,2, MP

TAUT

Example (recall Michel's talk)
= P(a) — P(a)
= P(v) = VyP(y)
= Ix(P(x) = VyP(y))
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The Embedding Lemma

Drinker's Paradox (a la Michel Parigot)

Example (cont'd)
1 P(ey=P(y)) — P(ey—=P(y))
2 (P(ey=P(y)) = P(ey=P(y))) —

— (P(ex(P(x) = P(ey—P(y))))) = P(ey—P(y))) critical axiom
3 P(ex(P(x) = P(ey=P(y))))) = P(ey~P(y)) 1,2, MP

TAUT

Example (recall Michel's talk)
= P(ey=P(y)) = P(ey~P(y))
= P(ey=P(y)) = VyP(y)
= Ix(P(x) — YyP(y))
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The Embedding Lemma

Proof of the Lemma

Proof
e we show V proofs 7: A;1,...,Ap
3 proof ©® containing A3, ..., A} (4 extra formulas)

e we use by induction on n
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The Embedding Lemma

Proof of the Lemma

Proof
e we show V proofs 7: A;1,...,Ap
3 proof ©® containing A3, ..., A} (4 extra formulas)

e we use by induction on n

e base case is trivial and if A, =: A is a propositional tautology, A is
also a tautology
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The Embedding Lemma

Proof of the Lemma

Proof
e we show V proofs 7: A;1,...,Ap
3 proof ©® containing A3, ..., A} (4 extra formulas)

e we use by induction on n

e base case is trivial and if A, =: A is a propositional tautology, A is
also a tautology

e Case A an instance of a quantifier axiom; suppose
A = A(t) — 3xA(x); hence

[A(t) = Ix A(x)]° = A°(t°) = A(exA(x)%)

the latter is a critical axiom
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The Embedding Lemma

Proof of the Lemma

Proof
e we show V proofs 7: A;1,...,Ap
3 proof ©® containing A3, ..., A} (4 extra formulas)

e we use by induction on n

e base case is trivial and if A, =: A is a propositional tautology, A is
also a tautology

e Case A an instance of a quantifier axiom; suppose
A = A(t) — 3xA(x); hence

[A(t) = Ix A(x)]° = A°(t°) = A(exA(x)%)

the latter is a critical axiom

e Case A follows by modus ponens from A; and A; = A; — A
applying IH there exists a proof 7 containing A7 and A7 — Ajf; we
add A® to 7*
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The Embedding Lemma

Proof (cont'd).

e Case A follows by generalisation; i.e. A= B — Vx C(x) and there
exists Aj = B — C(a); a eigenvariable
by IH there exists a proof 7* containing A = B* — C(a)%; replacing
the eigenvariable a by ,—A%(x) results in a proof containing

BE — A%(e4—A%(x)) = [B — Yx C(x)]F

we set 7° 1= 1"{a — £, A%(x)}
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The Embedding Lemma

Proof (cont'd).

e Case A follows by generalisation; i.e. A= B — Vx C(x) and there
exists Aj = B — C(a); a eigenvariable
by IH there exists a proof 7* containing A = B* — C(a)%; replacing
the eigenvariable a by ,—A%(x) results in a proof containing

BE — A%(e4—A%(x)) = [B — Yx C(x)]F

we set 7° 1= 1"{a — £, A%(x)}
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The Embedding Lemma

Proof (cont'd).

e Case A follows by generalisation; i.e. A= B — Vx C(x) and there
exists Aj = B — C(a); a eigenvariable
by IH there exists a proof 7* containing A = B* — C(a)%; replacing
the eigenvariable a by ,—A%(x) results in a proof containing

BE — A%(e4—A%(x)) = [B — Yx C(x)]F

we set 7° 1= 1"{a — £, A%(x)}

Lemma (Embedding Lemma)

if m is a PC.-proof of A then there is an EC.-proof ¢ of A® with
sz(m€) < 3-sz(m) and cc(n) < ce(m)
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The Embedding Lemma

Proof (cont'd).

e Case A follows by generalisation; i.e. A= B — Vx C(x) and there
exists Aj = B — C(a); a eigenvariable
by IH there exists a proof 7* containing A = B* — C(a)%; replacing
the eigenvariable a by ,—A%(x) results in a proof containing

BE — A%(e4—A%(x)) = [B — Yx C(x)]F

we set 7° 1= 1"{a — £, A%(x)}

Lemma (Embedding Lemma)

if m is a PC.-proof of A then there is an EC.-proof ¢ of A® with
sz(m®) < 3 - sz(m) and ce(n®) < ce(m)
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The Embedding Lemma
Quiz

the proof of the embedding lemma is wrong; can you spot the mistake?

Question J
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The Embedding Lemma
Quiz

Question
the proof of the embedding lemma is wrong; can you spot the mistake?

Answer
the application of IH in the generalisation case requires more work?

“paper by M., Zach contains the presented proof; bug was spotted by Michel
Parigot, thank!
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The First Epsilon Theorem

Theorem
suppose E(e1,...,en) is a quantifier-free formula containing only the
e-terms sy, ..., Sm, and

EC. Fr E(s1,...,5m),

then there are s-free terms tj such that

n
ECH\/ E(t],... th)
i=1
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The First Epsilon Theorem

Theorem
suppose E(e1,...,en) is a quantifier-free formula containing only the
e-terms sy, ..., Sm, and

EC. Fr E(s1,...,5m),

then there are s-free terms tj such that

ECP—\/ (th,...,t)

3-ce(m)

where n < 22.CC(W)
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The First Epsilon Theorem

Theorem
suppose E(e1,...,en) is a quantifier-free formula containing only the
e-terms sy, ..., Sm, and

EC. Fr E(s1,...,5m),

then there are s-free terms tj such that

ECP—\/ (th,...,t)

3-ce(m)

where n < 22.CC(7F)

number of instances independent off # of propositional inferences
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The First Epsilon Theorem

Herbrand’s Theorem

Theorem
if Ixy ... IxmE(x1, ..., Xxm) is a purely existential formula containing only
the bound variables x1, ..., xm, and
PChy 3x1...3xmE(x1, ..., Xm) ,
then there are terms tJ’ such that

n
ECH\/ E(t],....th)
i=1
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The First Epsilon Theorem

Herbrand’s Theorem

Theorem
if Ixy ... IxmE(x1, ..., Xxm) is a purely existential formula containing only
the bound variables x1, ..., xm, and
PChy 3x1...3xmE(x1, ..., Xm) ,
then there are terms tJ’ such that

n
ECH\/ E(t],....th)
i=1

where n < 2335:;
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The First Epsilon Theorem

Herbrand’s Theorem

Theorem
if Ixy ... IxmE(x1, ..., Xxm) is a purely existential formula containing only
the bound variables x1, ..., xm, and
PChy 3x1...3xmE(x1, ..., Xm) ,
then there are terms tJ’ such that
n . .
ECH\/ E(t],....th)
i=1

3.ce(m)

where n < 22.CC(W)

length of Herbrand disjunction independent off # of propositional
inferences
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The First Epsilon Theorem

Herbrand’s Theorem

Theorem
if Ixy ... IxmE(x1, ..., Xxm) is a purely existential formula containing only
the bound variables x1, ..., xm, and

PC.br 3x1 ... IxmE(x1, ..., Xm) ,

then there are e-free terms tJ’ such that

n
ECH\/ E(t],....th)
i=1

3.ce(m)

where n < 22.CC(W)

length of Herbrand disjunction independent off # of propositional
inferences
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Lower Bounds

Observations
e the upper bound on the length of the Herbrand disjunction depends
only on the critical count of the initial proof

e in contrast, usually the bound depends on the length and cut
complexity of the original proof
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Lower Bounds

Observations

e the upper bound on the length of the Herbrand disjunction depends
only on the critical count of the initial proof

e in contrast, usually the bound depends on the length and cut
complexity of the original proof

e in both cases the relationship is hyperexponential

e its well-known that proofs with cut have hyper-exponential speedup
over cut-free proofs
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Lower Bounds

Observations

e the upper bound on the length of the Herbrand disjunction depends
only on the critical count of the initial proof

e in contrast, usually the bound depends on the length and cut
complexity of the original proof

e in both cases the relationship is hyperexponential

e its well-known that proofs with cut have hyper-exponential speedup
over cut-free proofs

what about lower-bounds of the e-elimination procedure

Question J
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Lower Bounds

Definition
e an V-expansion (of E = E(s1,...,5m)) is a finite disjunction
E'=EV---VE
E;=E(sl,...,s!) for terms sj
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Lower Bounds

Definition
e an V-expansion (of E = E(s1,...,5m)) is a finite disjunction
E'=EV---VE
E;=E(sl,...,s!) for terms sj

e the Herbrand complexity HC(E) of a purely existential formula
E=3x...3x,E'(x1,...,xn) is the length of the shortest valid

V-expansion of E'(x1,...,xp)
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Lower Bounds

Definition
e an V-expansion (of E = E(s1,...,5m)) is a finite disjunction
E'=EV---VE
E;=E(sl,...,s!) for terms sj

e the Herbrand complexity HC(E) of a purely existential formula
E=3x...3x,E'(x1,...,xn) is the length of the shortest valid

V-expansion of E'(x1,...,xp)

Theorem

there is a sequence of formulas E; so that
for each k, 3 PC.-proof 7y of Ey with cc(my) < c - k, but
HC(Ex) > 21.

GM (ICS @ UIBK) WENPS, December 16, 2015 17/22


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proof Sketch of Part 1
Definition
Hyp; := Vx R(x, 0, S(x))
Hyp, = Yy¥xVz¥z1 (R(y, x, z) A R(z, x, z1) — R(y, S(x), 21))
C =3z ...3z(R(0,0, zx) A R(0, z, zk—1) A - - A R(0, z1, 2p))

Ex := (purely existential) prefix form of Hyp; A Hyp, — Ci

GM (ICS @ UIBK) WENPS, December 16, 2015


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proof Sketch of Part 1
Definition
Hyp; := Vx R(x, 0, S(x))
Hyp, = Yy¥xVz¥z1 (R(y, x, z) A R(z, x, z1) — R(y, S(x), 21))
Cy := 3z, ... 32(R(0,0, zx) A R(0, zx, zk—1) N -+ A R(0, z1, 29))

Ex := (purely existential) prefix form of Hyp; A Hyp, — Ci

R(n, m, k) expresses that n+ 2™ = k, and Cy expresses that 2} is defined
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Proof Sketch of Part 1
Definition
Hyp; := Vx R(x,0, 5(x))
Hyp, 1= VyVxVzVzi(R(y,x,z) A R(z,x,z1) = R(y, S(x), z1))
Cy := 3z, ... 32(R(0,0, zx) A R(0, zx, zk—1) N -+ A R(0, z1, 29))
Ex := (purely existential) prefix form of Hyp; A Hyp, — Ci

R(n, m, k) expresses that n+ 2™ = k, and Cy expresses that 2} is defined

Lemma

for every k, PC. b1, Ex, where cc(my) = c- k
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Proof Sketch of Part 1
Definition
Hyp; := Vx R(x,0, 5(x))
Hyp, 1= VyVxVzVzi(R(y,x,z) A R(z,x,z1) = R(y, S(x), z1))
Cy := 3z, ... 32(R(0,0, zx) A R(0, zx, zk—1) N -+ A R(0, z1, 29))
Ex := (purely existential) prefix form of Hyp; A Hyp, — Ci

R(n, m, k) expresses that n+ 2™ = k, and Cy expresses that 2} is defined

Lemma

for every k, PC. b1, Ex, where cc(my) = c- k

this establishes part one of the theorem

GM (ICS @ UIBK) WENPS, December 16, 2015


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proof Sketch of Part 2

Definition
consider Herbrand sequents of the sequent Hyp;, Hyp, = Ci
each of these sequents has the from 1, = A
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Proof Sketch of Part 2

Definition
consider Herbrand sequents of the sequent Hyp;, Hyp, = Ci

each of these sequents has the from 1, = A such that each
formula in

e [ is instance of R(x,0,5(x))
e [, isinstance of R(y,x,z) AR(z,x,z1) = R(y,S(x), z1)
e A is instance of R(0,0,z) A R(0, zx, zxk—1) A -+ A R(0, z1, z9)
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Proof Sketch of Part 2

Definition
consider Herbrand sequents of the sequent Hyp;, Hyp, = Ci

each of these sequents has the from 1, = A such that each
formula in

e [ is instance of R(x,0,5(x))
e [, isinstance of R(y,x,z) AR(z,x,z1) = R(y,S(x), z1)
e A is instance of R(0,0,z) A R(0, zx, zxk—1) A -+ A R(0, z1, z9)

max{|l1|, |2, |A]} < HC(Ex)
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Proof Sketch of Part 2

Definition
consider Herbrand sequents of the sequent Hyp;, Hyp, = Ci

each of these sequents has the from 1, = A such that each
formula in

e [ is instance of R(x,0,5(x))
e [, isinstance of R(y,x,z) AR(z,x,z1) = R(y,S(x), z1)
e A is instance of R(0,0,z) A R(0, zx, zxk—1) A -+ A R(0, z1, z9)

max{|l1|, |2, |A]} < HC(Ex)

Lemma

if T =(I'1,[2 = A) is a minimal Herbrand sequent of
Hypy, Hyp, = Cx, then || > 2
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Proof Sketch of Part 2

Definition
consider Herbrand sequents of the sequent Hyp;, Hyp, = Ci

each of these sequents has the from 1, = A such that each
formula in

e [ is instance of R(x,0,5(x))
e [, isinstance of R(y,x,z) AR(z,x,z1) = R(y,S(x), z1)
e A is instance of R(0,0,z) A R(0, zx, zxk—1) A -+ A R(0, z1, z9)

max{|l1|, |2, |A]} < HC(Ex)

Lemma

if T =(I'1,[2 = A) is a minimal Herbrand sequent of
Hypy, Hyp, = Cx, then || > 2

this establishes the lower bound on HC(Ey)
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The Second Epsilon Theorem

Theorem
If Ais a formula of L(PC) and PC. - A, then PCH A. J
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The Second Epsilon Theorem

Theorem
If Ais a formula of L(PC) and PC. - A, then PCH A.

Proof Sketch
e assume A = 3xVy3z B(x,y,z) and PC. - A
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The Second Epsilon Theorem

Theorem
If Ais a formula of L(PC) and PC. - A, then PCH A.

Proof Sketch
e assume A = 3xVy3z B(x,y,z) and PC. - A
o then PC. - 3x3z B(x, f(x),z) =: A"
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The Second Epsilon Theorem

Theorem
If Ais a formula of L(PC) and PC. - A, then PCH A.

Proof Sketch
e assume A = 3xVy3z B(x,y,z) and PC. - A
o then PC. - 3x3z B(x, f(x),z) =: A"
e apply the first epsilon theorem to this formula: 3 &-free terms r;, s;

ECH\/ B(ri, f(ri),s)

1
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The Second Epsilon Theorem

Theorem
If Ais a formula of L(PC) and PC. - A, then PCH A.

Proof Sketch
e assume A = 3xVy3z B(x,y,z) and PC. - A
e then PC. F 3x3z B(x, f(x),z) =
e apply the first epsilon theorem to this formula: 3 &-free terms r;, s;
ECH\/ B(ri, f(ri),s)
e replace the f(r,) by fresh free variables a; such that
ECFV, B(r,aj,s!)
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The Second Epsilon Theorem

Theorem
If Ais a formula of L(PC) and PC. - A, then PCH A.

Proof Sketch

e assume A = 3xVy3z B(x,y,z) and PC. - A

e then PC. F 3x3z B(x, f(x),z) =

e apply the first epsilon theorem to this formula: 3 &-free terms r;, s;

ECH\/ B(ri, f(ri),s)

e replace the f(r,) by fresh free variables a; such that
ECFV, B(r,aj,s!)

e deduce A in PC from above disjunction, essentially applying
quantifier shiftings
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The Second Epsilon Theorem

Theorem
If Ais a formula of L(PC) and PC. - A, then PCH A.

Proof Sketch

e assume A = 3xVy3z B(x,y,z) and PC. - A

e then PC. F 3x3z B(x, f(x),z) =

e apply the first epsilon theorem to this formula: 3 &-free terms r;, s;

ECH\/ B(ri, f(ri),s)

e replace the f(r,) by fresh free variables a; such that
ECFV, B(r,aj,s!)

e deduce A in PC from above disjunction, essentially applying
quantifier shiftings -
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The Second Epsilon Theorem

Conclusion and Future Work

Final Remarks
we only treated the case without equality

e-theorems and Herbrand's theorem: proof theory without sequents

e the bound on the length of the Herbrand disjunction depends only on
the critical count of the initial proof
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The Second Epsilon Theorem

Conclusion and Future Work

Final Remarks
we only treated the case without equality

e-theorems and Herbrand's theorem: proof theory without sequents

e the bound on the length of the Herbrand disjunction depends only on
the critical count of the initial proof

Future Work
finally sort out the case with equality:
equality is represented by (e-)identity schema

known method for e-elimination approximates possible size of atom
formulas

destroys exclusive dependency of length of Herbrand disjunction on
critical count
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The Second Epsilon Theorem

A Big Thank You to Alessio, Anupam,
Lutz, Paola, and Willem for this Exciting
Workshop!

. and Thanks All of You for Your

Attention!
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