

The Epsilon Theorems: Simple Things Made Simple "In the ε -calculus it is hard to understand anything"

Georg Moser

Institute of Computer Science University of Innsbruck

Workshop on Efficient and Natural Proof Systems, Dec. 16, 2015

Definition

• the ε -calculus is a formalisation of logic without quantifiers but with the ε -operator

- the ε -calculus is a formalisation of logic without quantifiers but with the ε -operator
- if A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term

- the ε -calculus is a formalisation of logic without quantifiers but with the ε -operator
- if A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term
- $\varepsilon_x A(x)$ is an indefinite description: $\varepsilon_x A(x)$ is some x for which A(x) is true

- the ε -calculus is a formalisation of logic without quantifiers but with the ε -operator
- if A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term
- $\varepsilon_x A(x)$ is an indefinite description: $\varepsilon_x A(x)$ is some x for which A(x) is true
- ε can replace $\exists : \exists x \, A(x) \Leftrightarrow A(\varepsilon_x A(x))$

- the ε -calculus is a formalisation of logic without quantifiers but with the ε -operator
- if A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term
- $\varepsilon_x A(x)$ is an indefinite description: $\varepsilon_x A(x)$ is some x for which A(x) is true
- ε can replace $\exists : \exists x \, A(x) \Leftrightarrow A(\varepsilon_x A(x))$
- axioms of ε-calculus:
 - propositional tautologies
 - 2 identity schemata
 - $A(t) \rightarrow A(\varepsilon_x A(x))$

- the ε -calculus is a formalisation of logic without quantifiers but with the ε -operator
- if A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term
- $\varepsilon_x A(x)$ is an indefinite description: $\varepsilon_x A(x)$ is some x for which A(x) is true
- ε can replace $\exists : \exists x \, A(x) \Leftrightarrow A(\varepsilon_x A(x))$
- axioms of ε-calculus:
 - propositional tautologies
 - 2 identity schemata (this talk)

Definition

- the ε -calculus is a formalisation of logic without quantifiers but with the ε -operator
- if A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term
- $\varepsilon_x A(x)$ is an indefinite description: $\varepsilon_x A(x)$ is some x for which A(x) is true
- ε can replace $\exists : \exists x \, A(x) \Leftrightarrow A(\varepsilon_x A(x))$
- axioms of ε-calculus:
 - propositional tautologies
 - 2 identity schemata (this talk)
 - $A(t) \rightarrow A(\varepsilon_x A(x))$

predicate logic can be embedded in the arepsilon-calculus

basis of proof theory

- basis of proof theory
- 2 interesting logical formalism
 - trade logical structure for term structure, that is, ε -calculus embodies deep inference \odot
 - formalisation of choice; recognised in its use in proof assistants
 - full potential TCS yet unexplored

- basis of proof theory
- interesting logical formalism
 - trade logical structure for term structure, that is, ε -calculus embodies deep inference \odot
 - formalisation of choice; recognised in its use in proof assistants
 - full potential TCS yet unexplored
- 3 foundation of noteworthy proof-theoretic results
 - ε -theorems and Herbrand's theorem (this talk)
 - ε -substitution method and its connection to learning (Tom's talk)
 - Kreisel's no-counter example interpretation

- basis of proof theory
- 2 interesting logical formalism
 - trade logical structure for term structure, that is, ε -calculus embodies deep inference \odot
 - formalisation of choice; recognised in its use in proof assistants
 - full potential TCS yet unexplored
- 3 foundation of noteworthy proof-theoretic results
 - ε -theorems and Herbrand's theorem (this talk)
 - ε -substitution method and its connection to learning (Tom's talk)
 - Kreisel's no-counter example interpretation
- 4 you asked for it ©:

I asked some of the others about the topics you proposed and there seemed to be a slight preference for epsilon calculus [...]

Outline

- Axiomatisation
- The Embedding Lemma
- The First Epsilon Theorem
- Lower Bounds
- The Second Epsilon Theorem

Axioms of the Epsilon Calculus

Definition

- AxEC: all substitution instances of propositional tautologies
- AxEC_ε: AxEC + all substitution instances of

$$\underbrace{A(t) \to A(\varepsilon_x A(x))}_{\text{critical formula}}$$

AxPC: AxEC + all substitution instances of

$$A(a) \rightarrow \exists x \, A(x) \qquad \forall x \, A(x) \rightarrow A(a)$$

AxPC_e: AxPC + all substitution instances of critical formulas

- a proof in EC (EC_{ε}) is a sequence A_1, \ldots, A_n of formulas such that each A_i is either in $A \times EC$ ($A \times EC_{\varepsilon}$) or it follows from formulas preceding it by modus ponens
- a proof in $PC(PC_{\varepsilon})$ is a sequence A_1, \ldots, A_n of formulas such that each A_i is either in $AxPC(AxPC_{\varepsilon})$ or follows from formulas preceding it by modus ponens or generalisation
- if A is provable in say EC_{ε} we write $EC_{\varepsilon} \vdash_{\pi} A$

- a proof in EC (EC $_{\varepsilon}$) is a sequence A_1, \ldots, A_n of formulas such that each A_i is either in AxEC (AxEC $_{\varepsilon}$) or it follows from formulas preceding it by modus ponens
- a proof in PC (PC $_{\varepsilon}$) is a sequence A_1, \ldots, A_n of formulas such that each A_i is either in AxPC (AxPC $_{\varepsilon}$) or follows from formulas preceding it by modus ponens or generalisation
- if A is provable in say $\mathsf{EC}_{\varepsilon}$ we write $\mathsf{EC}_{\varepsilon} \vdash_{\pi} A$
- the size $sz(\pi)$ of a proof π is the number of steps in π

- a proof in EC (EC $_{\varepsilon}$) is a sequence A_1, \ldots, A_n of formulas such that each A_i is either in AxEC (AxEC $_{\varepsilon}$) or it follows from formulas preceding it by modus ponens
- a proof in PC (PC $_{\varepsilon}$) is a sequence A_1, \ldots, A_n of formulas such that each A_i is either in AxPC (AxPC $_{\varepsilon}$) or follows from formulas preceding it by modus ponens or generalisation
- if A is provable in say $\mathsf{EC}_{\varepsilon}$ we write $\mathsf{EC}_{\varepsilon} \vdash_{\pi} A$
- the size $sz(\pi)$ of a proof π is the number of steps in π
- the critical count $cc(\pi)$ of π is the number of distinct critical formulas and quantifier axioms in π (plus 1)

quantifiers in a quantifier-free system:

$$\exists x \, A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x \, A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

quantifiers in a quantifier-free system:

$$\exists x \, A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x \, A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

Definition

$$f(t_1, \dots, t_n)^{\varepsilon} = f(t_1^{\varepsilon}, \dots, t_n^{\varepsilon})$$

$$x^{\varepsilon} = x$$

$$[\varepsilon_x A(x)]^{\varepsilon} = \varepsilon_x A(x)^{\varepsilon}$$

$$a^{\varepsilon} = a$$

quantifiers in a quantifier-free system:

$$\exists x \, A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x \, A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

Definition

$$f(t_1, \dots, t_n)^{\varepsilon} = f(t_1^{\varepsilon}, \dots, t_n^{\varepsilon}) \qquad P(t_1, \dots, t_n)^{\varepsilon} = P(t_1^{\varepsilon}, \dots, t_n^{\varepsilon})$$

$$x^{\varepsilon} = x \qquad [\varepsilon_x A(x)]^{\varepsilon} = \varepsilon_x A(x)^{\varepsilon}$$

$$a^{\varepsilon} = a$$

quantifiers in a quantifier-free system:

$$\exists x \, A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x \, A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

Definition

$$f(t_1, \dots, t_n)^{\varepsilon} = f(t_1^{\varepsilon}, \dots, t_n^{\varepsilon}) \qquad P(t_1, \dots, t_n)^{\varepsilon} = P(t_1^{\varepsilon}, \dots, t_n^{\varepsilon})$$

$$x^{\varepsilon} = x \qquad (A \to B)^{\varepsilon} = A^{\varepsilon} \to B^{\varepsilon} \qquad [\varepsilon_x A(x)]^{\varepsilon} = \varepsilon_x A(x)^{\varepsilon}$$

$$a^{\varepsilon} = a \qquad (A \lor B)^{\varepsilon} = A^{\varepsilon} \lor B^{\varepsilon}$$

$$(\neg A)^{\varepsilon} = \neg A^{\varepsilon} \qquad (A \land B)^{\varepsilon} = A^{\varepsilon} \land B^{\varepsilon}$$

quantifiers in a quantifier-free system:

$$\exists x \, A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x \, A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

Definition

$$f(t_{1},...,t_{n})^{\varepsilon} = f(t_{1}^{\varepsilon},...,t_{n}^{\varepsilon}) \qquad P(t_{1},...,t_{n})^{\varepsilon} = P(t_{1}^{\varepsilon},...,t_{n}^{\varepsilon})$$

$$x^{\varepsilon} = x \qquad (A \to B)^{\varepsilon} = A^{\varepsilon} \to B^{\varepsilon} \qquad [\varepsilon_{x}A(x)]^{\varepsilon} = \varepsilon_{x}A(x)^{\varepsilon}$$

$$a^{\varepsilon} = a \qquad (A \lor B)^{\varepsilon} = A^{\varepsilon} \lor B^{\varepsilon} \qquad (\exists x A(x))^{\varepsilon} = A^{\varepsilon}(\varepsilon_{x}A(x)^{\varepsilon})$$

$$(\neg A)^{\varepsilon} = \neg A^{\varepsilon} \qquad (A \land B)^{\varepsilon} = A^{\varepsilon} \land B^{\varepsilon} \qquad (\forall x A(x))^{\varepsilon} = A^{\varepsilon}(\varepsilon_{x}\neg A(x)^{\varepsilon})$$

quantifiers in a quantifier-free system:

$$\exists x \, A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x \, A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

Definition

define a mapping ε :

$$f(t_{1},...,t_{n})^{\varepsilon} = f(t_{1}^{\varepsilon},...,t_{n}^{\varepsilon}) \qquad P(t_{1},...,t_{n})^{\varepsilon} = P(t_{1}^{\varepsilon},...,t_{n}^{\varepsilon})$$

$$x^{\varepsilon} = x \qquad (A \to B)^{\varepsilon} = A^{\varepsilon} \to B^{\varepsilon} \qquad [\varepsilon_{x}A(x)]^{\varepsilon} = \varepsilon_{x}A(x)^{\varepsilon}$$

$$a^{\varepsilon} = a \qquad (A \lor B)^{\varepsilon} = A^{\varepsilon} \lor B^{\varepsilon} \qquad (\exists x A(x))^{\varepsilon} = A^{\varepsilon}(\varepsilon_{x}A(x)^{\varepsilon})$$

$$(\neg A)^{\varepsilon} = \neg A^{\varepsilon} \qquad (A \land B)^{\varepsilon} = A^{\varepsilon} \land B^{\varepsilon} \qquad (\forall x A(x))^{\varepsilon} = A^{\varepsilon}(\varepsilon_{x}\neg A(x)^{\varepsilon})$$

Lemma

if π is a PC $_{\varepsilon}$ -proof of A then there is an EC $_{\varepsilon}$ -proof π^{ε} of A^{ε} with $\mathrm{sz}(\pi^{\varepsilon}) \leqslant 3 \cdot \mathrm{sz}(\pi)$ and $\mathrm{cc}(\pi^{\varepsilon}) \leqslant \mathrm{cc}(\pi)$

$$[\exists x (P(x) \lor \forall y Q(y))]^{\varepsilon} =$$

$$[\exists x (P(x) \lor \forall y Q(y))]^{\varepsilon} =$$

$$= [P(x) \lor \forall y Q(y)]^{\varepsilon} \{x \leftarrow \varepsilon_{x} [P(x) \lor \forall y Q(y)]^{\varepsilon}\}$$

$$[\exists x (P(x) \lor \forall y Q(y))]^{\varepsilon} =$$

$$= [P(x) \lor \forall y Q(y)]^{\varepsilon} \{x \leftarrow \varepsilon_{x} [P(x) \lor \forall y Q(y)]^{\varepsilon}\}$$

$$[P(x) \lor \forall y Q(y)]^{\varepsilon} = P(x) \lor Q(\varepsilon_{y} \neg Q(y))$$

$$[\exists x (P(x) \lor \forall y Q(y))]^{\varepsilon} =$$

$$= [P(x) \lor \forall y Q(y)]^{\varepsilon} \{x \leftarrow \varepsilon_{x} [P(x) \lor \forall y Q(y)]^{\varepsilon} \}$$

$$[P(x) \lor \forall y Q(y)]^{\varepsilon} = P(x) \lor Q(\underbrace{\varepsilon_{y} \neg Q(y)}_{e_{1}})$$

$$= P(x) \lor Q(\underbrace{\varepsilon_{y} \neg Q(y)}_{e_{1}}) \{x \leftarrow \varepsilon_{x} [P(x) \lor Q(\underbrace{\varepsilon_{y} \neg Q(y)}_{e_{1}})] \}$$

$$[\exists x (P(x) \lor \forall y \ Q(y))]^{\varepsilon} =$$

$$= [P(x) \lor \forall y \ Q(y)]^{\varepsilon} \{x \leftarrow \varepsilon_{x} [P(x) \lor \forall y \ Q(y)]^{\varepsilon} \}$$

$$[P(x) \lor \forall y \ Q(y)]^{\varepsilon} = P(x) \lor Q(\varepsilon_{y} \neg Q(y))$$

$$= P(x) \lor Q(\varepsilon_{y} \neg Q(y)) \{x \leftarrow \varepsilon_{x} [P(x) \lor Q(\varepsilon_{y} \neg Q(y))] \}$$

$$= P(\varepsilon_{x} [P(x) \lor Q(\varepsilon_{y} \neg Q(y))]) \lor Q(\varepsilon_{y} \neg Q(y))$$

$$= P(\varepsilon_{x} [P(x) \lor Q(\varepsilon_{y} \neg Q(y))]) \lor Q(\varepsilon_{y} \neg Q(y))$$

$$P(a) \Rightarrow P(a)$$

$$P(a) \Rightarrow P(a)$$

$$P(a) \Rightarrow P(a), \forall y P(y)$$

$$\Rightarrow P(a) \rightarrow \forall y P(y), P(a)$$

$$\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), \forall y P(y)$$

$$P(b) \Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), \forall y P(y)$$

$$\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), \forall y P(y)$$

$$\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), P(b) \rightarrow \forall y P(y)$$

$$\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), \exists x (P(x) \rightarrow \forall y P(y))$$

$$\Rightarrow \exists x (P(x) \rightarrow \forall y P(y))$$

Example

$$\frac{P(a) \Rightarrow P(a)}{P(a) \Rightarrow P(a), \forall y P(y)}$$

$$\Rightarrow P(a) \rightarrow \forall y P(y), P(a)$$

$$\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), P(a)$$

$$\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), \forall y P(y)$$

$$P(b) \Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), \forall y P(y)$$

$$\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), P(b) \rightarrow \forall y P(y)$$

$$\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), \exists x (P(x) \rightarrow \forall y P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y))$$

$$[\forall y P(y)]^{\varepsilon} = P(\varepsilon_y \neg P(y))$$
$$[\exists x (P(x) \to \forall y P(y)]^{\varepsilon} = P(\underbrace{\varepsilon_x (P(x) \to P(\varepsilon_y \neg P(y)))}_{\varepsilon}) \to P(\varepsilon_y \neg P(y))$$

Example

$$P(a) \Rightarrow P(a)$$

$$P(a) \Rightarrow P(a), \forall y P(y)$$

$$\Rightarrow P(a) \rightarrow \forall y P(y), P(a)$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)), \forall y P(y)$$

$$P(b) \Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)), \forall y P(y)$$

$$P(b) \Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)), \forall y P(y)$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)), P(b) \rightarrow \forall y P(y)$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)), P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y))$$

where we employ

$$[\forall y P(y)]^{\varepsilon} = P(\varepsilon_y \neg P(y))$$
$$[\exists x (P(x) \to \forall y P(y)]^{\varepsilon} = P(\underbrace{\varepsilon_x (P(x) \to P(\varepsilon_y \neg P(y)))}_{\varepsilon}) \to P(\varepsilon_y \neg P(y))$$

9/22

Example

$$P(a) \Rightarrow P(a)$$

$$P(a) \Rightarrow P(a)$$

$$P(a) \Rightarrow P(a), P(\varepsilon_{y} \neg P(y))$$

$$\Rightarrow P(a) \rightarrow P(\varepsilon_{y} \neg P(y)), P(a)$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y} \neg P(y)), P(a)$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y} \neg P(y)), P(\varepsilon_{y} \neg P(y))$$

$$P(b) \Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y} \neg P(y)), P(\varepsilon_{y} \neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y} \neg P(y)), P(b) \rightarrow P(\varepsilon_{y} \neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y} \neg P(y)), P(\varepsilon) \rightarrow P(\varepsilon_{y} \neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y} \neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y} \neg P(y))$$

$$[\forall y P(y)]^{\varepsilon} = P(\varepsilon_y \neg P(y))$$
$$[\exists x (P(x) \to \forall y P(y)]^{\varepsilon} = P(\underbrace{\varepsilon_x (P(x) \to P(\varepsilon_y \neg P(y)))}_{\varepsilon}) \to P(\varepsilon_y \neg P(y))$$

Example

$$\frac{P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y}\neg P(y))}{P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))}$$

$$\Rightarrow P(\varepsilon_{y}\neg P(y)) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$P(\varepsilon) \Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y))$$

$$[\forall y P(y)]^{\varepsilon} = P(\varepsilon_y \neg P(y))$$
$$[\exists x (P(x) \to \forall y P(y)]^{\varepsilon} = P(\underbrace{\varepsilon_x (P(x) \to P(\varepsilon_y \neg P(y)))}_{\varepsilon}) \to P(\varepsilon_y \neg P(y))$$

Example

$$\frac{P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y}\neg P(y))}{P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))}$$

$$\Rightarrow P(\varepsilon_{y}\neg P(y)) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$P(\varepsilon) \Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y))$$

$$[\forall y P(y)]^{\varepsilon} = P(\varepsilon_y \neg P(y))$$
$$[\exists x (P(x) \to \forall y P(y)]^{\varepsilon} = P(\underbrace{\varepsilon_x (P(x) \to P(\varepsilon_y \neg P(y)))}_{\varepsilon}) \to P(\varepsilon_y \neg P(y))$$

Example

$$\frac{P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y}\neg P(y))}{P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))}$$

$$\Rightarrow P(\varepsilon_{y}\neg P(y)) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$P(\varepsilon) \Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y))$$

$$\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_{y}\neg P(y))$$

$$[P(\varepsilon_y \neg P(y)) \to P(\varepsilon_y \neg P(y))] \to [P(\underbrace{\varepsilon_x (P(x) \to P(\varepsilon_y \neg P(y)))}) \to P(\varepsilon_y \neg P(y))]$$

Drinker's Paradox (à la Michel Parigot)

Example (cont'd)

1
$$P(\varepsilon_y \neg P(y)) \rightarrow P(\varepsilon_y \neg P(y))$$
 TAUT
2 $(P(\varepsilon_y \neg P(y)) \rightarrow P(\varepsilon_y \neg P(y))) \rightarrow$
 $\rightarrow (P(\varepsilon_x (P(x) \rightarrow P(\varepsilon_y \neg P(y))))) \rightarrow P(\varepsilon_y \neg P(y)))$ critical axiom
3 $P(\varepsilon_x (P(x) \rightarrow P(\varepsilon_y \neg P(y))))) \rightarrow P(\varepsilon_y \neg P(y))$ 1,2, MP

Drinker's Paradox (à la Michel Parigot)

Example (cont'd)

1
$$P(\varepsilon_y \neg P(y)) \rightarrow P(\varepsilon_y \neg P(y))$$
 TAUT
2 $(P(\varepsilon_y \neg P(y)) \rightarrow P(\varepsilon_y \neg P(y))) \rightarrow P(\varepsilon_y \neg P(y))) \rightarrow P(\varepsilon_y \neg P(y))$ critical axiom

critical axiom

3
$$P(\varepsilon_x(P(x) \to P(\varepsilon_y \neg P(y))))) \to P(\varepsilon_y \neg P(y))$$
 1,2, MP

Example (recall Michel's talk)

$$\frac{\Rightarrow P(a) \to P(a)}{\Rightarrow P(v) \to \forall y P(y)}$$
$$\Rightarrow \exists x (P(x) \to \forall y P(y))$$

Drinker's Paradox (à la Michel Parigot)

Example (cont'd)

1
$$P(\varepsilon_y \neg P(y)) \rightarrow P(\varepsilon_y \neg P(y))$$
 TAUT

$$(P(\varepsilon_y \neg P(y)) \to P(\varepsilon_y \neg P(y))) \to \\ \to (P(\varepsilon_x (P(x) \to P(\varepsilon_y \neg P(y))))) \to P(\varepsilon_y \neg P(y))) \quad \text{critical axiom}$$

3
$$P(\varepsilon_x(P(x) \to P(\varepsilon_y \neg P(y))))) \to P(\varepsilon_y \neg P(y))$$
 1,2, MP

Example (recall Michel's talk)

$$\frac{\Rightarrow P(\varepsilon_y \neg P(y)) \to P(\varepsilon_y \neg P(y))}{\Rightarrow P(\varepsilon_y \neg P(y)) \to \forall y P(y)}$$
$$\Rightarrow \exists x (P(x) \to \forall y P(y))$$

Proof

- we show \forall proofs $\pi: A_1, \ldots, A_n$ \exists proof π^{ε} containing $A_1^{\varepsilon}, \ldots, A_n^{\varepsilon}$ (+ extra formulas)
- we use by induction on *n*

Proof

- we show \forall proofs $\pi \colon A_1, \dots, A_n$ \exists proof π^{ε} containing $A_1^{\varepsilon}, \dots, A_n^{\varepsilon}$ (+ extra formulas)
- we use by induction on n
- base case is trivial and if $A_n =: A$ is a propositional tautology, A^{ε} is also a tautology

Proof

- we show \forall proofs $\pi \colon A_1, \dots, A_n$ \exists proof π^{ε} containing $A_1^{\varepsilon}, \dots, A_n^{\varepsilon}$ (+ extra formulas)
- we use by induction on n
- base case is trivial and if $A_n =: A$ is a propositional tautology, A^{ε} is also a tautology
- Case A an instance of a quantifier axiom; suppose $A = A(t) \rightarrow \exists x A(x)$; hence

$$[A(t) \to \exists x \, A(x)]^{\varepsilon} = A^{\varepsilon}(t^{\varepsilon}) \to A^{\varepsilon}(\varepsilon_{x} A(x)^{\varepsilon})$$

the latter is a critical axiom

Proof

- we show \forall proofs $\pi: A_1, \ldots, A_n$ \exists proof π^{ε} containing $A_1^{\varepsilon}, \ldots, A_n^{\varepsilon}$ (+ extra formulas)
- we use by induction on n
- base case is trivial and if $A_n =: A$ is a propositional tautology, A^{ε} is also a tautology
- Case A an instance of a quantifier axiom; suppose $A = A(t) \rightarrow \exists x A(x)$; hence

$$[A(t) \to \exists x \, A(x)]^{\varepsilon} = A^{\varepsilon}(t^{\varepsilon}) \to A^{\varepsilon}(\varepsilon_{x} A(x)^{\varepsilon})$$

the latter is a critical axiom

• Case A follows by modus ponens from A_i and $A_j \equiv A_i \to A$ applying IH there exists a proof π^* containing A_i^{ε} and $A_i^{\varepsilon} \to A_j^{\varepsilon}$; we add A^{ε} to π^*

• Case A follows by generalisation; i.e. $A = B \to \forall x \ C(x)$ and there exists $A_i = B \to C(a)$; a eigenvariable by IH there exists a proof π^* containing $A_i^{\varepsilon} \equiv B^{\varepsilon} \to C(a)^{\varepsilon}$; replacing the eigenvariable a by $\varepsilon_x \neg A^{\varepsilon}(x)$ results in a proof containing

$$B^{\varepsilon} \to A^{\varepsilon}(\varepsilon_x \neg A^{\varepsilon}(x)) = [B \to \forall x \ C(x)]^{\varepsilon}$$

we set $\pi^{\varepsilon} := \pi^* \{ a \mapsto \varepsilon_{\mathsf{X}} \neg A^{\varepsilon}(x) \}$

• Case A follows by generalisation; i.e. $A=B \to \forall x \ C(x)$ and there exists $A_i=B \to C(a)$; a eigenvariable by IH there exists a proof π^* containing $A_i^\varepsilon \equiv B^\varepsilon \to C(a)^\varepsilon$; replacing the eigenvariable a by $\varepsilon_x \neg A^\varepsilon(x)$ results in a proof containing

$$B^{\varepsilon} \to A^{\varepsilon}(\varepsilon_x \neg A^{\varepsilon}(x)) = [B \to \forall x \ C(x)]^{\varepsilon}$$

we set $\pi^{\varepsilon} := \pi^* \{ a \mapsto \varepsilon_{\mathsf{X}} \neg A^{\varepsilon}(x) \}$

• Case A follows by generalisation; i.e. $A = B \to \forall x \ C(x)$ and there exists $A_i = B \to C(a)$; a eigenvariable by IH there exists a proof π^* containing $A_i^{\varepsilon} \equiv B^{\varepsilon} \to C(a)^{\varepsilon}$; replacing the eigenvariable a by $\varepsilon_x \neg A^{\varepsilon}(x)$ results in a proof containing

$$B^{\varepsilon} \to A^{\varepsilon}(\varepsilon_x \neg A^{\varepsilon}(x)) = [B \to \forall x \ C(x)]^{\varepsilon}$$

we set $\pi^{\varepsilon} := \pi^* \{ a \mapsto \varepsilon_{\mathsf{X}} \neg A^{\varepsilon}(\mathsf{X}) \}$

Lemma (Embedding Lemma)

if π is a PC $_{\varepsilon}$ -proof of A then there is an EC $_{\varepsilon}$ -proof π^{ε} of A^{ε} with $\mathrm{sz}(\pi^{\varepsilon}) \leqslant 3 \cdot \mathrm{sz}(\pi)$ and $\mathrm{cc}(\pi^{\varepsilon}) \leqslant \mathrm{cc}(\pi)$

• Case A follows by generalisation; i.e. $A = B \to \forall x \ C(x)$ and there exists $A_i = B \to C(a)$; a eigenvariable by IH there exists a proof π^* containing $A_i^{\varepsilon} \equiv B^{\varepsilon} \to C(a)^{\varepsilon}$; replacing the eigenvariable a by $\varepsilon_x \neg A^{\varepsilon}(x)$ results in a proof containing

$$B^{\varepsilon} \to A^{\varepsilon}(\varepsilon_x \neg A^{\varepsilon}(x)) = [B \to \forall x \ C(x)]^{\varepsilon}$$

we set $\pi^{\varepsilon} := \pi^* \{ a \mapsto \varepsilon_{\mathsf{X}} \neg A^{\varepsilon}(\mathsf{X}) \}$

Lemma (Embedding Lemma)

if π is a PC $_{\varepsilon}$ -proof of A then there is an EC $_{\varepsilon}$ -proof π^{ε} of A^{ε} with $\mathrm{sz}(\pi^{\varepsilon}) \leqslant 3 \cdot \mathrm{sz}(\pi)$ and $\mathrm{cc}(\pi^{\varepsilon}) \leqslant \mathrm{cc}(\pi)$

Quiz

Question

the proof of the embedding lemma is wrong; can you spot the mistake?

Quiz

Question

the proof of the embedding lemma is wrong; can you spot the mistake?

Answer

the application of IH in the generalisation case requires more work^a

^apaper by M., Zach contains the presented proof; bug was spotted by Michel Parigot, thank!

The First Epsilon Theorem

Theorem

suppose $E(e_1, ..., e_m)$ is a quantifier-free formula containing only the ε -terms $s_1, ..., s_m$, and

$$\mathsf{EC}_{arepsilon} \vdash_{\pi} E(s_1,\ldots,s_m)$$
 ,

then there are ε -free terms t^i_j such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^n E(t_1^i, \ldots, t_m^i)$$

The First Epsilon Theorem

Theorem

suppose $E(e_1, ..., e_m)$ is a quantifier-free formula containing only the ε -terms $s_1, ..., s_m$, and

$$\mathsf{EC}_{arepsilon} \vdash_{\pi} E(s_1,\ldots,s_m)$$
 ,

then there are ε -free terms t^i_j such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^n E(t_1^i, \dots, t_m^i)$$

where $n \leq 2^{3 \cdot cc(\pi)}_{2 \cdot cc(\pi)}$

The First Epsilon Theorem

Theorem

suppose $E(e_1, ..., e_m)$ is a quantifier-free formula containing only the ε -terms $s_1, ..., s_m$, and

$$\mathsf{EC}_{arepsilon} \vdash_{\pi} E(s_1,\ldots,s_m)$$
 ,

then there are ε -free terms t^i_j such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^n E(t_1^i, \dots, t_m^i)$$

where $n \leq 2^{3 \cdot cc(\pi)}_{2 \cdot cc(\pi)}$

number of instances independent off # of propositional inferences

Theorem

if $\exists x_1 \dots \exists x_m E(x_1, \dots, x_m)$ is a purely existential formula containing only the bound variables x_1, \dots, x_m , and

$$PC \vdash_{\pi} \exists x_1 \ldots \exists x_m E(x_1, \ldots, x_m)$$
,

then there are t_j^i such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^n E(t_1^i, \ldots, t_m^i)$$

Theorem

if $\exists x_1 \dots \exists x_m E(x_1, \dots, x_m)$ is a purely existential formula containing only the bound variables x_1, \dots, x_m , and

$$\mathsf{PC} \vdash_{\pi} \exists x_1 \ldots \exists x_m E(x_1, \ldots, x_m)$$
,

then there are $terms\ t^i_j$ such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^n E(t_1^i, \ldots, t_m^i)$$

where $n \leq 2^{3 \cdot cc(\pi)}_{2 \cdot cc(\pi)}$

Theorem

if $\exists x_1 \dots \exists x_m E(x_1, \dots, x_m)$ is a purely existential formula containing only the bound variables x_1, \dots, x_m , and

$$\mathsf{PC} \vdash_{\pi} \exists x_1 \ldots \exists x_m E(x_1, \ldots, x_m)$$
,

then there are

terms t_j^i such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^n E(t_1^i, \ldots, t_m^i)$$

where $n \leq 2^{3 \cdot cc(\pi)}_{2 \cdot cc(\pi)}$

length of Herbrand disjunction independent off # of propositional inferences

Theorem

if $\exists x_1 \dots \exists x_m E(x_1, \dots, x_m)$ is a purely existential formula containing only the bound variables x_1, \dots, x_m , and

$$\mathsf{PC}_{\varepsilon} \vdash_{\pi} \exists x_1 \ldots \exists x_m E(x_1, \ldots, x_m)$$
,

then there are ε -free terms t^i_j such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^n E(t_1^i, \ldots, t_m^i)$$

where
$$n \leq 2^{3 \cdot cc(\pi)}_{2 \cdot cc(\pi)}$$

length of Herbrand disjunction independent off # of propositional inferences

Observations

- the upper bound on the length of the Herbrand disjunction depends only on the critical count of the initial proof
- in contrast, usually the bound depends on the length and cut complexity of the original proof

Observations

- the upper bound on the length of the Herbrand disjunction depends only on the critical count of the initial proof
- in contrast, usually the bound depends on the length and cut complexity of the original proof
- in both cases the relationship is hyperexponential
- its well-known that proofs with cut have hyper-exponential speedup over cut-free proofs

Observations

- the upper bound on the length of the Herbrand disjunction depends only on the critical count of the initial proof
- in contrast, usually the bound depends on the length and cut complexity of the original proof
- in both cases the relationship is hyperexponential
- its well-known that proofs with cut have hyper-exponential speedup over cut-free proofs

Question

what about lower-bounds of the ε -elimination procedure

Definition

• an \vee -expansion (of $E \equiv E(s_1,\ldots,s_m)$) is a finite disjunction $E' \equiv E_1 \vee \cdots \vee E_l$ $E_i \equiv E(s_1^i,\ldots,s_m^i) \text{ for terms } s_i^i$

Definition

- an \vee -expansion (of $E \equiv E(s_1,\ldots,s_m)$) is a finite disjunction $E' \equiv E_1 \vee \cdots \vee E_l$ $E_i \equiv E(s_1^i,\ldots,s_m^i) \text{ for terms } s_i^i$
- the Herbrand complexity HC(E) of a purely existential formula $E \equiv \exists x_1 \dots \exists x_n E'(x_1, \dots, x_n)$ is the length of the shortest valid \lor -expansion of $E'(x_1, \dots, x_n)$

Definition

- an \vee -expansion (of $E \equiv E(s_1,\ldots,s_m)$) is a finite disjunction $E' \equiv E_1 \vee \cdots \vee E_l$ $E_i \equiv E(s_1^i,\ldots,s_m^i) \text{ for terms } s_j^i$
- the Herbrand complexity HC(E) of a purely existential formula $E \equiv \exists x_1 \dots \exists x_n E'(x_1, \dots, x_n)$ is the length of the shortest valid \lor -expansion of $E'(x_1, \dots, x_n)$

Theorem

there is a sequence of formulas E_k so that

- **1** for each k, $\exists \mathsf{PC}_{\varepsilon}$ -proof π_k of E_k with $\mathrm{cc}(\pi_k) \leq c \cdot k$, but
- 2 $HC(E_k) \ge 2^1_k$.

Definition

$$\begin{aligned} & \text{Hyp}_1 := \forall x \, R(x,0,S(x)) \\ & \text{Hyp}_2 := \forall y \forall x \forall z \forall z_1 (R(y,x,z) \land R(z,x,z_1) \rightarrow R(y,S(x),z_1)) \\ & \textit{C}_k := \exists z_k \dots \exists z_0 (R(0,0,z_k) \land R(0,z_k,z_{k-1}) \land \dots \land R(0,z_1,z_0)) \\ & \textit{E}_k := \text{(purely existential) prefix form of Hyp}_1 \land \text{Hyp}_2 \rightarrow \textit{C}_k \end{aligned}$$

Definition

$$\begin{aligned} \mathbf{Hyp_1} &:= \forall x \, R(x,0,S(x)) \\ \mathbf{Hyp_2} &:= \forall y \forall x \forall z \forall z_1 (R(y,x,z) \land R(z,x,z_1) \rightarrow R(y,S(x),z_1)) \\ C_k &:= \exists z_k \dots \exists z_0 (R(0,0,z_k) \land R(0,z_k,z_{k-1}) \land \dots \land R(0,z_1,z_0)) \end{aligned}$$

 $E_k :=$ (purely existential) prefix form of $\mathrm{Hyp}_1 \wedge \mathrm{Hyp}_2 o C_k$

R(n, m, k) expresses that $n + 2^m = k$, and C_k expresses that 2^1_k is defined

Definition

$$\begin{aligned} & \operatorname{Hyp}_1 := \forall x \, R(x,0,S(x)) \\ & \operatorname{Hyp}_2 := \forall y \forall x \forall z \forall z_1 (R(y,x,z) \land R(z,x,z_1) \rightarrow R(y,S(x),z_1)) \\ & C_k := \exists z_k \dots \exists z_0 (R(0,0,z_k) \land R(0,z_k,z_{k-1}) \land \dots \land R(0,z_1,z_0)) \\ & E_k := (\text{purely existential}) \text{ prefix form of } \operatorname{Hyp}_1 \land \operatorname{Hyp}_2 \rightarrow C_k \end{aligned}$$

R(n, m, k) expresses that $n + 2^m = k$, and C_k expresses that 2^1_k is defined

Lemma

for every k, $PC_{\varepsilon} \vdash_{\pi_k} E_k$, where $cc(\pi_k) = c \cdot k$

Definition

$$\begin{aligned} \mathbf{H}\mathbf{y}\mathbf{p_1} &:= \forall x\, R(x,0,S(x)) \\ \mathbf{H}\mathbf{y}\mathbf{p_2} &:= \forall y \forall x \forall z \forall z_1 (R(y,x,z) \land R(z,x,z_1) \rightarrow R(y,S(x),z_1)) \\ \mathbf{C_k} &:= \exists z_k \dots \exists z_0 (R(0,0,z_k) \land R(0,z_k,z_{k-1}) \land \dots \land R(0,z_1,z_0)) \\ \mathbf{E_k} &:= (\text{purely existential}) \text{ prefix form of } \mathbf{H}\mathbf{y}\mathbf{p_1} \land \mathbf{H}\mathbf{y}\mathbf{p_2} \rightarrow C_k \end{aligned}$$

R(n, m, k) expresses that $n + 2^m = k$, and C_k expresses that 2^1_k is defined

Lemma

for every
$$k$$
, $PC_{\varepsilon} \vdash_{\pi_k} E_k$, where $cc(\pi_k) = c \cdot k$

this establishes part one of the theorem

Definition

consider Herbrand sequents of the sequent $\mathrm{Hyp}_1,\mathrm{Hyp}_2\Rightarrow \mathcal{C}_k$

 \blacksquare each of these sequents has the from $\Gamma_1, \Gamma_2 \Rightarrow \Delta$

Definition

consider Herbrand sequents of the sequent $\mathrm{Hyp}_1,\mathrm{Hyp}_2\Rightarrow\mathcal{C}_k$

- \blacksquare each of these sequents has the from $\Gamma_1,\Gamma_2\Rightarrow\Delta$ such that each formula in
 - Γ_1 is instance of R(x, 0, S(x))
 - Γ_2 is instance of $R(y, x, z) \land R(z, x, z_1) \rightarrow R(y, S(x), z_1)$
 - Δ is instance of $R(0,0,z_k) \wedge R(0,z_k,z_{k-1}) \wedge \cdots \wedge R(0,z_1,z_0)$

Definition

consider Herbrand sequents of the sequent $\mathrm{Hyp}_1,\mathrm{Hyp}_2\Rightarrow\mathcal{C}_k$

- I each of these sequents has the from $\Gamma_1, \Gamma_2 \Rightarrow \Delta$ such that each formula in
 - Γ_1 is instance of R(x, 0, S(x))
 - Γ_2 is instance of $R(y, x, z) \land R(z, x, z_1) \rightarrow R(y, S(x), z_1)$
 - Δ is instance of $R(0,0,z_k) \wedge R(0,z_k,z_{k-1}) \wedge \cdots \wedge R(0,z_1,z_0)$

Definition

consider Herbrand sequents of the sequent $\mathrm{Hyp}_1,\mathrm{Hyp}_2\Rightarrow\mathcal{C}_k$

- I each of these sequents has the from $\Gamma_1, \Gamma_2 \Rightarrow \Delta$ such that each formula in
 - Γ_1 is instance of R(x, 0, S(x))
 - Γ_2 is instance of $R(y, x, z) \wedge R(z, x, z_1) \rightarrow R(y, S(x), z_1)$
 - Δ is instance of $R(0,0,z_k) \wedge R(0,z_k,z_{k-1}) \wedge \cdots \wedge R(0,z_1,z_0)$

Lemma

if $T = (\Gamma_1, \Gamma_2 \Rightarrow \Delta)$ is a minimal Herbrand sequent of $\operatorname{Hyp}_1, \operatorname{Hyp}_2 \Rightarrow C_k$, then $|\Gamma_1| \geqslant 2_k^1$

Definition

consider Herbrand sequents of the sequent $\mathrm{Hyp}_1,\mathrm{Hyp}_2\Rightarrow\mathcal{C}_k$

- \blacksquare each of these sequents has the from $\Gamma_1, \Gamma_2 \Rightarrow \Delta$ such that each formula in
 - Γ_1 is instance of R(x, 0, S(x))
 - Γ_2 is instance of $R(y, x, z) \land R(z, x, z_1) \rightarrow R(y, S(x), z_1)$
 - Δ is instance of $R(0,0,z_k) \wedge R(0,z_k,z_{k-1}) \wedge \cdots \wedge R(0,z_1,z_0)$

Lemma

if
$$T = (\Gamma_1, \Gamma_2 \Rightarrow \Delta)$$
 is a minimal Herbrand sequent of $\operatorname{Hyp}_1, \operatorname{Hyp}_2 \Rightarrow C_k$, then $|\Gamma_1| \geqslant 2_k^1$

this establishes the lower bound on $HC(E_k)$

Theorem

If A is a formula of L(PC) and $PC_{\varepsilon} \vdash A$, then $PC \vdash A$.

Theorem

If A is a formula of L(PC) and $PC_{\varepsilon} \vdash A$, then $PC \vdash A$.

Proof Sketch

• assume $A = \exists x \forall y \exists z \ B(x, y, z)$ and $\mathsf{PC}_{\varepsilon} \vdash A$

Theorem

If A is a formula of L(PC) and $PC_{\varepsilon} \vdash A$, then $PC \vdash A$.

Proof Sketch

- assume $A = \exists x \forall y \exists z \ B(x, y, z)$ and $\mathsf{PC}_{\varepsilon} \vdash A$
- then $PC_{\varepsilon} \vdash \exists x \exists z \ B(x, f(x), z) =: A^H$

Theorem

If A is a formula of L(PC) and $PC_{\varepsilon} \vdash A$, then $PC \vdash A$.

Proof Sketch

- assume $A = \exists x \forall y \exists z \ B(x, y, z)$ and $PC_{\varepsilon} \vdash A$
- then $PC_{\varepsilon} \vdash \exists x \exists z \ B(x, f(x), z) =: A^H$
- apply the first epsilon theorem to this formula: $\exists \varepsilon$ -free terms r_i , s_i

$$EC \vdash \bigvee_{i} B(r_{i}, f(r_{i}), s_{i})$$

Theorem

If A is a formula of L(PC) and $PC_{\varepsilon} \vdash A$, then $PC \vdash A$.

Proof Sketch

- assume $A = \exists x \forall y \exists z \ B(x, y, z)$ and $PC_{\varepsilon} \vdash A$
- then $PC_{\varepsilon} \vdash \exists x \exists z \ B(x, f(x), z) =: A^H$
- apply the first epsilon theorem to this formula: $\exists \varepsilon$ -free terms r_i , s_i

$$EC \vdash \bigvee_{i} B(r_{i}, f(r_{i}), s_{i})$$

• replace the $f(r_i)$ by fresh free variables a_i such that $EC \vdash \bigvee_i B(r'_i, a_i, s'_i)$

Theorem

If A is a formula of L(PC) and $PC_{\varepsilon} \vdash A$, then $PC \vdash A$.

Proof Sketch

- assume $A = \exists x \forall y \exists z \ B(x, y, z)$ and $PC_{\varepsilon} \vdash A$
- then $PC_{\varepsilon} \vdash \exists x \exists z \ B(x, f(x), z) =: A^H$
- apply the first epsilon theorem to this formula: $\exists \varepsilon$ -free terms r_i , s_i

$$EC \vdash \bigvee_{i} B(r_i, f(r_i), s_i)$$

- replace the $f(r_i)$ by fresh free variables a_i such that $EC \vdash \bigvee_i B(r'_i, a_i, s'_i)$
- deduce A in PC from above disjunction, essentially applying quantifier shiftings

Theorem

If A is a formula of L(PC) and $PC_{\varepsilon} \vdash A$, then $PC \vdash A$.

Proof Sketch

- assume $A = \exists x \forall y \exists z \ B(x, y, z)$ and $PC_{\varepsilon} \vdash A$
- then $PC_{\varepsilon} \vdash \exists x \exists z \ B(x, f(x), z) =: A^H$
- apply the first epsilon theorem to this formula: $\exists \varepsilon$ -free terms r_i , s_i

$$EC \vdash \bigvee_{i} B(r_{i}, f(r_{i}), s_{i})$$

- replace the $f(r_i)$ by fresh free variables a_i such that $EC \vdash \bigvee_i B(r'_i, a_i, s'_i)$
- deduce A in PC from above disjunction, essentially applying quantifier shiftings

Conclusion and Future Work

Final Remarks

- 1 we only treated the case without equality
- $\mathbf{2} \ \, \varepsilon \text{-theorems} \ \, \text{and Herbrand's theorem: proof theory without sequents}$
 - the bound on the length of the Herbrand disjunction depends only on the critical count of the initial proof

Conclusion and Future Work

Final Remarks

- 1 we only treated the case without equality
- - the bound on the length of the Herbrand disjunction depends only on the critical count of the initial proof

Future Work

finally sort out the case with equality:

- **1** equality is represented by $(\varepsilon$ -)identity schema
- **2** known method for ε -elimination approximates possible size of atom formulas
- 3 destroys exclusive dependency of length of Herbrand disjunction on critical count

A Big Thank You to Alessio, Anupam, Lutz, Paola, and Willem for this Exciting Workshop!

... and Thanks All of You for Your Attention!