YES(?,O(n^2)) 7.14/3.11 YES(?,O(n^2)) 7.14/3.11 7.14/3.11 We are left with following problem, upon which TcT provides the 7.14/3.11 certificate YES(?,O(n^2)). 7.14/3.11 7.14/3.11 Strict Trs: 7.14/3.11 { and(tt(), X) -> activate(X) 7.14/3.11 , activate(X) -> X 7.14/3.11 , plus(N, 0()) -> N 7.14/3.11 , plus(N, s(M)) -> s(plus(N, M)) 7.14/3.11 , x(N, 0()) -> 0() 7.14/3.11 , x(N, s(M)) -> plus(x(N, M), N) } 7.14/3.11 Obligation: 7.14/3.11 innermost runtime complexity 7.14/3.11 Answer: 7.14/3.11 YES(?,O(n^2)) 7.14/3.11 7.14/3.11 The input was oriented with the instance of 'Small Polynomial Path 7.14/3.11 Order (PS)' as induced by the safe mapping 7.14/3.11 7.14/3.11 safe(and) = {1, 2}, safe(tt) = {}, safe(activate) = {1}, 7.14/3.11 safe(plus) = {1}, safe(0) = {}, safe(s) = {1}, safe(x) = {} 7.14/3.11 7.14/3.11 and precedence 7.14/3.11 7.14/3.11 and > activate, and > plus, x > activate, x > plus, and ~ x, 7.14/3.11 activate ~ plus . 7.14/3.11 7.14/3.11 Following symbols are considered recursive: 7.14/3.11 7.14/3.11 {and, activate, plus, x} 7.14/3.11 7.14/3.11 The recursion depth is 2. 7.14/3.11 7.14/3.11 For your convenience, here are the satisfied ordering constraints: 7.14/3.11 7.14/3.11 and(; tt(), X) > activate(; X) 7.14/3.11 7.14/3.11 activate(; X) > X 7.14/3.11 7.14/3.11 plus(0(); N) > N 7.14/3.11 7.14/3.11 plus(s(; M); N) > s(; plus(M; N)) 7.14/3.11 7.14/3.11 x(N, 0();) > 0() 7.14/3.11 7.14/3.11 x(N, s(; M);) > plus(N; x(N, M;)) 7.14/3.11 7.14/3.11 7.14/3.11 Hurray, we answered YES(?,O(n^2)) 7.14/3.13 EOF