YES(?,O(n^1)) 0.00/0.73 YES(?,O(n^1)) 0.00/0.73 0.00/0.73 We are left with following problem, upon which TcT provides the 0.00/0.73 certificate YES(?,O(n^1)). 0.00/0.73 0.00/0.73 Strict Trs: 0.00/0.73 { from(X) -> cons(X, n__from(n__s(X))) 0.00/0.73 , from(X) -> n__from(X) 0.00/0.73 , 2ndspos(0(), Z) -> rnil() 0.00/0.73 , 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z))) 0.00/0.73 , 2ndspos(s(N), cons2(X, cons(Y, Z))) -> 0.00/0.73 rcons(posrecip(Y), 2ndsneg(N, activate(Z))) 0.00/0.73 , s(X) -> n__s(X) 0.00/0.73 , activate(X) -> X 0.00/0.73 , activate(n__from(X)) -> from(activate(X)) 0.00/0.73 , activate(n__s(X)) -> s(activate(X)) 0.00/0.73 , 2ndsneg(0(), Z) -> rnil() 0.00/0.73 , 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z))) 0.00/0.73 , 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> 0.00/0.73 rcons(negrecip(Y), 2ndspos(N, activate(Z))) 0.00/0.73 , pi(X) -> 2ndspos(X, from(0())) 0.00/0.73 , plus(0(), Y) -> Y 0.00/0.73 , plus(s(X), Y) -> s(plus(X, Y)) 0.00/0.73 , times(0(), Y) -> 0() 0.00/0.73 , times(s(X), Y) -> plus(Y, times(X, Y)) 0.00/0.73 , square(X) -> times(X, X) } 0.00/0.73 Obligation: 0.00/0.73 innermost runtime complexity 0.00/0.73 Answer: 0.00/0.73 YES(?,O(n^1)) 0.00/0.73 0.00/0.73 Arguments of following rules are not normal-forms: 0.00/0.73 0.00/0.73 { 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z))) 0.00/0.73 , 2ndspos(s(N), cons2(X, cons(Y, Z))) -> 0.00/0.73 rcons(posrecip(Y), 2ndsneg(N, activate(Z))) 0.00/0.73 , 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z))) 0.00/0.73 , 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> 0.00/0.73 rcons(negrecip(Y), 2ndspos(N, activate(Z))) 0.00/0.73 , plus(s(X), Y) -> s(plus(X, Y)) 0.00/0.73 , times(s(X), Y) -> plus(Y, times(X, Y)) } 0.00/0.73 0.00/0.73 All above mentioned rules can be savely removed. 0.00/0.73 0.00/0.73 We are left with following problem, upon which TcT provides the 0.00/0.73 certificate YES(?,O(n^1)). 0.00/0.73 0.00/0.73 Strict Trs: 0.00/0.73 { from(X) -> cons(X, n__from(n__s(X))) 0.00/0.73 , from(X) -> n__from(X) 0.00/0.73 , 2ndspos(0(), Z) -> rnil() 0.00/0.73 , s(X) -> n__s(X) 0.00/0.73 , activate(X) -> X 0.00/0.73 , activate(n__from(X)) -> from(activate(X)) 0.00/0.73 , activate(n__s(X)) -> s(activate(X)) 0.00/0.73 , 2ndsneg(0(), Z) -> rnil() 0.00/0.73 , pi(X) -> 2ndspos(X, from(0())) 0.00/0.73 , plus(0(), Y) -> Y 0.00/0.73 , times(0(), Y) -> 0() 0.00/0.73 , square(X) -> times(X, X) } 0.00/0.73 Obligation: 0.00/0.73 innermost runtime complexity 0.00/0.73 Answer: 0.00/0.73 YES(?,O(n^1)) 0.00/0.73 0.00/0.73 The input was oriented with the instance of 'Small Polynomial Path 0.00/0.73 Order (PS,1-bounded)' as induced by the safe mapping 0.00/0.73 0.00/0.73 safe(from) = {1}, safe(cons) = {1, 2}, safe(n__from) = {1}, 0.00/0.73 safe(n__s) = {1}, safe(2ndspos) = {1, 2}, safe(0) = {}, 0.00/0.73 safe(rnil) = {}, safe(s) = {1}, safe(activate) = {}, 0.00/0.73 safe(2ndsneg) = {}, safe(pi) = {1}, safe(plus) = {}, 0.00/0.73 safe(times) = {1, 2}, safe(square) = {1} 0.00/0.73 0.00/0.73 and precedence 0.00/0.73 0.00/0.73 from > s, from > plus, 2ndspos > s, 2ndspos > plus, 0.00/0.73 activate > from, activate > s, activate > plus, pi > from, 0.00/0.73 pi > 2ndspos, pi > s, pi > 2ndsneg, pi > plus, pi > times, 0.00/0.73 times > s, times > plus, square > from, square > 2ndspos, 0.00/0.73 square > s, square > 2ndsneg, square > plus, square > times, 0.00/0.73 2ndspos ~ times, s ~ plus, activate ~ pi, activate ~ square, 0.00/0.73 pi ~ square . 0.00/0.73 0.00/0.73 Following symbols are considered recursive: 0.00/0.73 0.00/0.73 {2ndspos, activate, times} 0.00/0.73 0.00/0.73 The recursion depth is 1. 0.00/0.73 0.00/0.73 For your convenience, here are the satisfied ordering constraints: 0.00/0.73 0.00/0.73 from(; X) > cons(; X, n__from(; n__s(; X))) 0.00/0.73 0.00/0.73 from(; X) > n__from(; X) 0.00/0.73 0.00/0.73 2ndspos(; 0(), Z) > rnil() 0.00/0.73 0.00/0.73 s(; X) > n__s(; X) 0.00/0.73 0.00/0.73 activate(X;) > X 0.00/0.73 0.00/0.73 activate(n__from(; X);) > from(; activate(X;)) 0.00/0.73 0.00/0.73 activate(n__s(; X);) > s(; activate(X;)) 0.00/0.73 0.00/0.73 2ndsneg(0(), Z;) > rnil() 0.00/0.73 0.00/0.73 pi(; X) > 2ndspos(; X, from(; 0())) 0.00/0.73 0.00/0.73 plus(0(), Y;) > Y 0.00/0.73 0.00/0.73 times(; 0(), Y) > 0() 0.00/0.73 0.00/0.73 square(; X) > times(; X, X) 0.00/0.73 0.00/0.73 0.00/0.73 Hurray, we answered YES(?,O(n^1)) 0.00/0.73 EOF