YES(?,O(n^1)) 0.00/0.39 YES(?,O(n^1)) 0.00/0.39 0.00/0.39 We are left with following problem, upon which TcT provides the 0.00/0.39 certificate YES(?,O(n^1)). 0.00/0.39 0.00/0.39 Strict Trs: 0.00/0.39 { from(X) -> cons(X, n__from(n__s(X))) 0.00/0.39 , from(X) -> n__from(X) 0.00/0.39 , sel(0(), cons(X, Y)) -> X 0.00/0.39 , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 0.00/0.39 , s(X) -> n__s(X) 0.00/0.39 , activate(X) -> X 0.00/0.39 , activate(n__from(X)) -> from(activate(X)) 0.00/0.39 , activate(n__s(X)) -> s(activate(X)) } 0.00/0.39 Obligation: 0.00/0.39 innermost runtime complexity 0.00/0.39 Answer: 0.00/0.39 YES(?,O(n^1)) 0.00/0.39 0.00/0.39 Arguments of following rules are not normal-forms: 0.00/0.39 0.00/0.39 { sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) } 0.00/0.39 0.00/0.39 All above mentioned rules can be savely removed. 0.00/0.39 0.00/0.39 We are left with following problem, upon which TcT provides the 0.00/0.39 certificate YES(?,O(n^1)). 0.00/0.39 0.00/0.39 Strict Trs: 0.00/0.39 { from(X) -> cons(X, n__from(n__s(X))) 0.00/0.39 , from(X) -> n__from(X) 0.00/0.39 , sel(0(), cons(X, Y)) -> X 0.00/0.39 , s(X) -> n__s(X) 0.00/0.39 , activate(X) -> X 0.00/0.39 , activate(n__from(X)) -> from(activate(X)) 0.00/0.39 , activate(n__s(X)) -> s(activate(X)) } 0.00/0.39 Obligation: 0.00/0.39 innermost runtime complexity 0.00/0.39 Answer: 0.00/0.39 YES(?,O(n^1)) 0.00/0.39 0.00/0.39 The input was oriented with the instance of 'Small Polynomial Path 0.00/0.39 Order (PS,1-bounded)' as induced by the safe mapping 0.00/0.39 0.00/0.39 safe(from) = {1}, safe(cons) = {1, 2}, safe(n__from) = {1}, 0.00/0.39 safe(n__s) = {1}, safe(sel) = {}, safe(0) = {}, safe(s) = {1}, 0.00/0.39 safe(activate) = {} 0.00/0.39 0.00/0.39 and precedence 0.00/0.39 0.00/0.39 sel > from, sel > s, activate > from, activate > s, from ~ s, 0.00/0.39 sel ~ activate . 0.00/0.39 0.00/0.39 Following symbols are considered recursive: 0.00/0.39 0.00/0.39 {activate} 0.00/0.39 0.00/0.39 The recursion depth is 1. 0.00/0.39 0.00/0.39 For your convenience, here are the satisfied ordering constraints: 0.00/0.39 0.00/0.39 from(; X) > cons(; X, n__from(; n__s(; X))) 0.00/0.39 0.00/0.39 from(; X) > n__from(; X) 0.00/0.39 0.00/0.39 sel(0(), cons(; X, Y);) > X 0.00/0.39 0.00/0.39 s(; X) > n__s(; X) 0.00/0.39 0.00/0.39 activate(X;) > X 0.00/0.39 0.00/0.39 activate(n__from(; X);) > from(; activate(X;)) 0.00/0.39 0.00/0.39 activate(n__s(; X);) > s(; activate(X;)) 0.00/0.39 0.00/0.39 0.00/0.39 Hurray, we answered YES(?,O(n^1)) 0.00/0.39 EOF