YES(O(1),O(n^1)) 19.15/10.76 YES(O(1),O(n^1)) 19.15/10.76 19.15/10.76 We are left with following problem, upon which TcT provides the 19.15/10.76 certificate YES(O(1),O(n^1)). 19.15/10.76 19.15/10.76 Strict Trs: 19.15/10.76 { a__f(X1, X2, X3) -> f(X1, X2, X3) 19.15/10.76 , a__f(b(), X, c()) -> a__f(X, a__c(), X) 19.15/10.76 , a__c() -> b() 19.15/10.76 , a__c() -> c() 19.15/10.76 , mark(b()) -> b() 19.15/10.76 , mark(c()) -> a__c() 19.15/10.76 , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) } 19.15/10.76 Obligation: 19.15/10.76 innermost runtime complexity 19.15/10.76 Answer: 19.15/10.76 YES(O(1),O(n^1)) 19.15/10.76 19.15/10.76 We add the following dependency tuples: 19.15/10.76 19.15/10.76 Strict DPs: 19.15/10.76 { a__f^#(X1, X2, X3) -> c_1() 19.15/10.76 , a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) 19.15/10.76 , a__c^#() -> c_3() 19.15/10.76 , a__c^#() -> c_4() 19.15/10.76 , mark^#(b()) -> c_5() 19.15/10.76 , mark^#(c()) -> c_6(a__c^#()) 19.15/10.76 , mark^#(f(X1, X2, X3)) -> 19.15/10.76 c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } 19.15/10.76 19.15/10.76 and mark the set of starting terms. 19.15/10.76 19.15/10.76 We are left with following problem, upon which TcT provides the 19.15/10.76 certificate YES(O(1),O(n^1)). 19.15/10.76 19.15/10.76 Strict DPs: 19.15/10.76 { a__f^#(X1, X2, X3) -> c_1() 19.15/10.76 , a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) 19.15/10.76 , a__c^#() -> c_3() 19.15/10.76 , a__c^#() -> c_4() 19.15/10.76 , mark^#(b()) -> c_5() 19.15/10.76 , mark^#(c()) -> c_6(a__c^#()) 19.15/10.76 , mark^#(f(X1, X2, X3)) -> 19.15/10.76 c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } 19.15/10.76 Weak Trs: 19.15/10.76 { a__f(X1, X2, X3) -> f(X1, X2, X3) 19.15/10.76 , a__f(b(), X, c()) -> a__f(X, a__c(), X) 19.15/10.76 , a__c() -> b() 19.15/10.76 , a__c() -> c() 19.15/10.76 , mark(b()) -> b() 19.15/10.76 , mark(c()) -> a__c() 19.15/10.76 , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) } 19.15/10.76 Obligation: 19.15/10.76 innermost runtime complexity 19.15/10.76 Answer: 19.15/10.76 YES(O(1),O(n^1)) 19.15/10.76 19.15/10.76 We estimate the number of application of {1,3,4,5} by applications 19.15/10.76 of Pre({1,3,4,5}) = {2,6,7}. Here rules are labeled as follows: 19.15/10.76 19.15/10.76 DPs: 19.15/10.76 { 1: a__f^#(X1, X2, X3) -> c_1() 19.15/10.76 , 2: a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) 19.15/10.76 , 3: a__c^#() -> c_3() 19.15/10.76 , 4: a__c^#() -> c_4() 19.15/10.76 , 5: mark^#(b()) -> c_5() 19.15/10.76 , 6: mark^#(c()) -> c_6(a__c^#()) 19.15/10.76 , 7: mark^#(f(X1, X2, X3)) -> 19.15/10.76 c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } 19.15/10.76 19.15/10.76 We are left with following problem, upon which TcT provides the 19.15/10.76 certificate YES(O(1),O(n^1)). 19.15/10.76 19.15/10.76 Strict DPs: 19.15/10.76 { a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) 19.15/10.76 , mark^#(c()) -> c_6(a__c^#()) 19.15/10.76 , mark^#(f(X1, X2, X3)) -> 19.15/10.76 c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } 19.15/10.76 Weak DPs: 19.15/10.76 { a__f^#(X1, X2, X3) -> c_1() 19.15/10.76 , a__c^#() -> c_3() 19.15/10.76 , a__c^#() -> c_4() 19.15/10.76 , mark^#(b()) -> c_5() } 19.15/10.76 Weak Trs: 19.15/10.76 { a__f(X1, X2, X3) -> f(X1, X2, X3) 19.15/10.76 , a__f(b(), X, c()) -> a__f(X, a__c(), X) 19.15/10.76 , a__c() -> b() 19.15/10.76 , a__c() -> c() 19.15/10.76 , mark(b()) -> b() 19.15/10.76 , mark(c()) -> a__c() 19.15/10.76 , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) } 19.15/10.76 Obligation: 19.15/10.76 innermost runtime complexity 19.15/10.76 Answer: 19.15/10.76 YES(O(1),O(n^1)) 19.15/10.76 19.15/10.76 We estimate the number of application of {1,2} by applications of 19.15/10.76 Pre({1,2}) = {3}. Here rules are labeled as follows: 19.15/10.76 19.15/10.76 DPs: 19.15/10.76 { 1: a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) 19.15/10.76 , 2: mark^#(c()) -> c_6(a__c^#()) 19.15/10.76 , 3: mark^#(f(X1, X2, X3)) -> 19.15/10.76 c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) 19.15/10.76 , 4: a__f^#(X1, X2, X3) -> c_1() 19.15/10.76 , 5: a__c^#() -> c_3() 19.15/10.76 , 6: a__c^#() -> c_4() 19.15/10.76 , 7: mark^#(b()) -> c_5() } 19.15/10.76 19.15/10.76 We are left with following problem, upon which TcT provides the 19.15/10.76 certificate YES(O(1),O(n^1)). 19.15/10.76 19.15/10.76 Strict DPs: 19.15/10.76 { mark^#(f(X1, X2, X3)) -> 19.15/10.76 c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } 19.15/10.76 Weak DPs: 19.15/10.76 { a__f^#(X1, X2, X3) -> c_1() 19.15/10.76 , a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) 19.15/10.76 , a__c^#() -> c_3() 19.15/10.76 , a__c^#() -> c_4() 19.15/10.76 , mark^#(b()) -> c_5() 19.15/10.76 , mark^#(c()) -> c_6(a__c^#()) } 19.15/10.76 Weak Trs: 19.15/10.76 { a__f(X1, X2, X3) -> f(X1, X2, X3) 19.15/10.76 , a__f(b(), X, c()) -> a__f(X, a__c(), X) 19.15/10.76 , a__c() -> b() 19.15/10.76 , a__c() -> c() 19.15/10.76 , mark(b()) -> b() 19.15/10.76 , mark(c()) -> a__c() 19.15/10.76 , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) } 19.15/10.76 Obligation: 19.15/10.76 innermost runtime complexity 19.15/10.76 Answer: 19.15/10.76 YES(O(1),O(n^1)) 19.15/10.76 19.15/10.76 The following weak DPs constitute a sub-graph of the DG that is 19.15/10.76 closed under successors. The DPs are removed. 19.15/10.76 19.15/10.76 { a__f^#(X1, X2, X3) -> c_1() 19.15/10.76 , a__f^#(b(), X, c()) -> c_2(a__f^#(X, a__c(), X), a__c^#()) 19.15/10.76 , a__c^#() -> c_3() 19.15/10.76 , a__c^#() -> c_4() 19.15/10.76 , mark^#(b()) -> c_5() 19.15/10.76 , mark^#(c()) -> c_6(a__c^#()) } 19.15/10.76 19.15/10.76 We are left with following problem, upon which TcT provides the 19.15/10.76 certificate YES(O(1),O(n^1)). 19.15/10.76 19.15/10.76 Strict DPs: 19.15/10.76 { mark^#(f(X1, X2, X3)) -> 19.15/10.76 c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } 19.15/10.76 Weak Trs: 19.15/10.76 { a__f(X1, X2, X3) -> f(X1, X2, X3) 19.15/10.76 , a__f(b(), X, c()) -> a__f(X, a__c(), X) 19.15/10.76 , a__c() -> b() 19.15/10.76 , a__c() -> c() 19.15/10.76 , mark(b()) -> b() 19.15/10.76 , mark(c()) -> a__c() 19.15/10.76 , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) } 19.15/10.76 Obligation: 19.15/10.76 innermost runtime complexity 19.15/10.76 Answer: 19.15/10.76 YES(O(1),O(n^1)) 19.15/10.76 19.15/10.76 Due to missing edges in the dependency-graph, the right-hand sides 19.15/10.76 of following rules could be simplified: 19.15/10.76 19.15/10.76 { mark^#(f(X1, X2, X3)) -> 19.15/10.76 c_7(a__f^#(X1, mark(X2), X3), mark^#(X2)) } 19.15/10.76 19.15/10.76 We are left with following problem, upon which TcT provides the 19.15/10.76 certificate YES(O(1),O(n^1)). 19.15/10.76 19.15/10.76 Strict DPs: { mark^#(f(X1, X2, X3)) -> c_1(mark^#(X2)) } 19.15/10.76 Weak Trs: 19.15/10.76 { a__f(X1, X2, X3) -> f(X1, X2, X3) 19.15/10.76 , a__f(b(), X, c()) -> a__f(X, a__c(), X) 19.15/10.76 , a__c() -> b() 19.15/10.76 , a__c() -> c() 19.15/10.76 , mark(b()) -> b() 19.15/10.76 , mark(c()) -> a__c() 19.15/10.76 , mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) } 19.15/10.76 Obligation: 19.15/10.76 innermost runtime complexity 19.15/10.76 Answer: 19.15/10.76 YES(O(1),O(n^1)) 19.15/10.76 19.15/10.76 No rule is usable, rules are removed from the input problem. 19.15/10.76 19.15/10.76 We are left with following problem, upon which TcT provides the 19.15/10.76 certificate YES(O(1),O(n^1)). 19.15/10.76 19.15/10.76 Strict DPs: { mark^#(f(X1, X2, X3)) -> c_1(mark^#(X2)) } 19.15/10.76 Obligation: 19.15/10.76 innermost runtime complexity 19.15/10.76 Answer: 19.15/10.76 YES(O(1),O(n^1)) 19.15/10.76 19.15/10.76 We use the processor 'Small Polynomial Path Order (PS,1-bounded)' 19.15/10.76 to orient following rules strictly. 19.15/10.76 19.15/10.76 DPs: 19.15/10.76 { 1: mark^#(f(X1, X2, X3)) -> c_1(mark^#(X2)) } 19.15/10.76 19.15/10.76 Sub-proof: 19.15/10.76 ---------- 19.15/10.76 The input was oriented with the instance of 'Small Polynomial Path 19.15/10.76 Order (PS,1-bounded)' as induced by the safe mapping 19.15/10.76 19.15/10.76 safe(f) = {1, 2, 3}, safe(mark^#) = {}, safe(c_1) = {} 19.15/10.76 19.15/10.76 and precedence 19.15/10.76 19.15/10.76 empty . 19.15/10.76 19.15/10.76 Following symbols are considered recursive: 19.15/10.76 19.15/10.76 {mark^#} 19.15/10.76 19.15/10.76 The recursion depth is 1. 19.15/10.76 19.15/10.76 Further, following argument filtering is employed: 19.15/10.76 19.15/10.76 pi(f) = [1, 2, 3], pi(mark^#) = [1], pi(c_1) = [1] 19.15/10.76 19.15/10.76 Usable defined function symbols are a subset of: 19.15/10.76 19.15/10.76 {mark^#} 19.15/10.76 19.15/10.76 For your convenience, here are the satisfied ordering constraints: 19.15/10.76 19.15/10.76 pi(mark^#(f(X1, X2, X3))) = mark^#(f(; X1, X2, X3);) 19.15/10.76 > c_1(mark^#(X2;);) 19.15/10.76 = pi(c_1(mark^#(X2))) 19.15/10.76 19.15/10.76 19.15/10.76 The strictly oriented rules are moved into the weak component. 19.15/10.76 19.15/10.76 We are left with following problem, upon which TcT provides the 19.15/10.76 certificate YES(O(1),O(1)). 19.15/10.76 19.15/10.76 Weak DPs: { mark^#(f(X1, X2, X3)) -> c_1(mark^#(X2)) } 19.15/10.76 Obligation: 19.15/10.76 innermost runtime complexity 19.15/10.76 Answer: 19.15/10.76 YES(O(1),O(1)) 19.15/10.76 19.15/10.76 The following weak DPs constitute a sub-graph of the DG that is 19.15/10.76 closed under successors. The DPs are removed. 19.15/10.76 19.15/10.76 { mark^#(f(X1, X2, X3)) -> c_1(mark^#(X2)) } 19.15/10.76 19.15/10.76 We are left with following problem, upon which TcT provides the 19.15/10.76 certificate YES(O(1),O(1)). 19.15/10.76 19.15/10.76 Rules: Empty 19.15/10.76 Obligation: 19.15/10.76 innermost runtime complexity 19.15/10.76 Answer: 19.15/10.76 YES(O(1),O(1)) 19.15/10.76 19.15/10.76 Empty rules are trivially bounded 19.15/10.76 19.15/10.76 Hurray, we answered YES(O(1),O(n^1)) 19.15/10.76 EOF