YES(O(1),O(n^1)) 0.00/0.68 YES(O(1),O(n^1)) 0.00/0.68 0.00/0.68 We are left with following problem, upon which TcT provides the 0.00/0.68 certificate YES(O(1),O(n^1)). 0.00/0.68 0.00/0.68 Strict Trs: 0.00/0.68 { 2nd(cons(X, n__cons(Y, Z))) -> activate(Y) 0.00/0.68 , cons(X1, X2) -> n__cons(X1, X2) 0.00/0.68 , activate(X) -> X 0.00/0.68 , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) 0.00/0.68 , activate(n__from(X)) -> from(activate(X)) 0.00/0.68 , activate(n__s(X)) -> s(activate(X)) 0.00/0.68 , from(X) -> cons(X, n__from(n__s(X))) 0.00/0.68 , from(X) -> n__from(X) 0.00/0.68 , s(X) -> n__s(X) } 0.00/0.68 Obligation: 0.00/0.68 innermost runtime complexity 0.00/0.68 Answer: 0.00/0.68 YES(O(1),O(n^1)) 0.00/0.68 0.00/0.68 Arguments of following rules are not normal-forms: 0.00/0.68 0.00/0.68 { 2nd(cons(X, n__cons(Y, Z))) -> activate(Y) } 0.00/0.68 0.00/0.68 All above mentioned rules can be savely removed. 0.00/0.68 0.00/0.68 We are left with following problem, upon which TcT provides the 0.00/0.68 certificate YES(O(1),O(n^1)). 0.00/0.68 0.00/0.68 Strict Trs: 0.00/0.68 { cons(X1, X2) -> n__cons(X1, X2) 0.00/0.68 , activate(X) -> X 0.00/0.68 , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) 0.00/0.68 , activate(n__from(X)) -> from(activate(X)) 0.00/0.68 , activate(n__s(X)) -> s(activate(X)) 0.00/0.68 , from(X) -> cons(X, n__from(n__s(X))) 0.00/0.68 , from(X) -> n__from(X) 0.00/0.68 , s(X) -> n__s(X) } 0.00/0.68 Obligation: 0.00/0.68 innermost runtime complexity 0.00/0.68 Answer: 0.00/0.68 YES(O(1),O(n^1)) 0.00/0.68 0.00/0.68 We use the processor 'Small Polynomial Path Order (PS,1-bounded)' 0.00/0.68 to orient following rules strictly. 0.00/0.68 0.00/0.68 Trs: 0.00/0.68 { cons(X1, X2) -> n__cons(X1, X2) 0.00/0.68 , activate(X) -> X 0.00/0.68 , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) 0.00/0.68 , activate(n__from(X)) -> from(activate(X)) 0.00/0.68 , activate(n__s(X)) -> s(activate(X)) 0.00/0.68 , from(X) -> cons(X, n__from(n__s(X))) 0.00/0.68 , from(X) -> n__from(X) 0.00/0.68 , s(X) -> n__s(X) } 0.00/0.68 0.00/0.68 The induced complexity on above rules (modulo remaining rules) is 0.00/0.68 YES(?,O(n^1)) . These rules are moved into the corresponding weak 0.00/0.68 component(s). 0.00/0.68 0.00/0.68 Sub-proof: 0.00/0.68 ---------- 0.00/0.68 The input was oriented with the instance of 'Small Polynomial Path 0.00/0.68 Order (PS,1-bounded)' as induced by the safe mapping 0.00/0.68 0.00/0.68 safe(cons) = {1, 2}, safe(n__cons) = {1, 2}, safe(activate) = {}, 0.00/0.68 safe(from) = {1}, safe(n__from) = {1}, safe(n__s) = {1}, 0.00/0.68 safe(s) = {1} 0.00/0.68 0.00/0.68 and precedence 0.00/0.68 0.00/0.68 activate > cons, activate > from, activate > s, from > cons, 0.00/0.68 s > cons, from ~ s . 0.00/0.68 0.00/0.68 Following symbols are considered recursive: 0.00/0.68 0.00/0.68 {activate} 0.00/0.68 0.00/0.68 The recursion depth is 1. 0.00/0.68 0.00/0.68 For your convenience, here are the satisfied ordering constraints: 0.00/0.68 0.00/0.68 cons(; X1, X2) > n__cons(; X1, X2) 0.00/0.68 0.00/0.68 activate(X;) > X 0.00/0.68 0.00/0.68 activate(n__cons(; X1, X2);) > cons(; activate(X1;), X2) 0.00/0.68 0.00/0.68 activate(n__from(; X);) > from(; activate(X;)) 0.00/0.68 0.00/0.68 activate(n__s(; X);) > s(; activate(X;)) 0.00/0.68 0.00/0.68 from(; X) > cons(; X, n__from(; n__s(; X))) 0.00/0.68 0.00/0.68 from(; X) > n__from(; X) 0.00/0.68 0.00/0.68 s(; X) > n__s(; X) 0.00/0.68 0.00/0.68 0.00/0.68 We return to the main proof. 0.00/0.68 0.00/0.68 We are left with following problem, upon which TcT provides the 0.00/0.68 certificate YES(O(1),O(1)). 0.00/0.68 0.00/0.68 Weak Trs: 0.00/0.68 { cons(X1, X2) -> n__cons(X1, X2) 0.00/0.68 , activate(X) -> X 0.00/0.68 , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) 0.00/0.68 , activate(n__from(X)) -> from(activate(X)) 0.00/0.68 , activate(n__s(X)) -> s(activate(X)) 0.00/0.68 , from(X) -> cons(X, n__from(n__s(X))) 0.00/0.68 , from(X) -> n__from(X) 0.00/0.68 , s(X) -> n__s(X) } 0.00/0.68 Obligation: 0.00/0.68 innermost runtime complexity 0.00/0.68 Answer: 0.00/0.68 YES(O(1),O(1)) 0.00/0.68 0.00/0.68 Empty rules are trivially bounded 0.00/0.68 0.00/0.68 Hurray, we answered YES(O(1),O(n^1)) 0.00/0.69 EOF