YES(?,O(n^1)) 0.00/0.43 YES(?,O(n^1)) 0.00/0.43 0.00/0.43 We are left with following problem, upon which TcT provides the 0.00/0.43 certificate YES(?,O(n^1)). 0.00/0.43 0.00/0.43 Strict Trs: 0.00/0.43 { norm(nil()) -> 0() 0.00/0.43 , norm(g(x, y)) -> s(norm(x)) 0.00/0.43 , f(x, nil()) -> g(nil(), x) 0.00/0.43 , f(x, g(y, z)) -> g(f(x, y), z) 0.00/0.43 , rem(nil(), y) -> nil() 0.00/0.43 , rem(g(x, y), 0()) -> g(x, y) 0.00/0.43 , rem(g(x, y), s(z)) -> rem(x, z) } 0.00/0.43 Obligation: 0.00/0.43 innermost runtime complexity 0.00/0.43 Answer: 0.00/0.43 YES(?,O(n^1)) 0.00/0.43 0.00/0.43 The input was oriented with the instance of 'Small Polynomial Path 0.00/0.43 Order (PS)' as induced by the safe mapping 0.00/0.43 0.00/0.43 safe(norm) = {}, safe(nil) = {}, safe(0) = {}, safe(g) = {1, 2}, 0.00/0.43 safe(s) = {1}, safe(f) = {}, safe(rem) = {1} 0.00/0.43 0.00/0.43 and precedence 0.00/0.43 0.00/0.43 norm ~ f, norm ~ rem, f ~ rem . 0.00/0.43 0.00/0.43 Following symbols are considered recursive: 0.00/0.43 0.00/0.43 {norm, f, rem} 0.00/0.43 0.00/0.43 The recursion depth is 1. 0.00/0.43 0.00/0.43 For your convenience, here are the satisfied ordering constraints: 0.00/0.43 0.00/0.43 norm(nil();) > 0() 0.00/0.43 0.00/0.43 norm(g(; x, y);) > s(; norm(x;)) 0.00/0.43 0.00/0.43 f(x, nil();) > g(; nil(), x) 0.00/0.43 0.00/0.43 f(x, g(; y, z);) > g(; f(x, y;), z) 0.00/0.43 0.00/0.43 rem(y; nil()) > nil() 0.00/0.43 0.00/0.43 rem(0(); g(; x, y)) > g(; x, y) 0.00/0.43 0.00/0.43 rem(s(; z); g(; x, y)) > rem(z; x) 0.00/0.43 0.00/0.43 0.00/0.43 Hurray, we answered YES(?,O(n^1)) 0.00/0.43 EOF