YES(O(1),O(n^1)) 0.00/0.54 YES(O(1),O(n^1)) 0.00/0.54 0.00/0.54 We are left with following problem, upon which TcT provides the 0.00/0.54 certificate YES(O(1),O(n^1)). 0.00/0.54 0.00/0.54 Strict Trs: 0.00/0.54 { double(x) -> +(x, x) 0.00/0.54 , double(0()) -> 0() 0.00/0.54 , double(s(x)) -> s(s(double(x))) 0.00/0.54 , +(x, 0()) -> x 0.00/0.54 , +(x, s(y)) -> s(+(x, y)) 0.00/0.54 , +(s(x), y) -> s(+(x, y)) } 0.00/0.54 Obligation: 0.00/0.54 innermost runtime complexity 0.00/0.54 Answer: 0.00/0.54 YES(O(1),O(n^1)) 0.00/0.54 0.00/0.54 We add the following weak dependency pairs: 0.00/0.54 0.00/0.54 Strict DPs: 0.00/0.54 { double^#(x) -> c_1(+^#(x, x)) 0.00/0.54 , double^#(0()) -> c_2() 0.00/0.54 , double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , +^#(x, 0()) -> c_4() 0.00/0.54 , +^#(x, s(y)) -> c_5(+^#(x, y)) 0.00/0.54 , +^#(s(x), y) -> c_6(+^#(x, y)) } 0.00/0.54 0.00/0.54 and mark the set of starting terms. 0.00/0.54 0.00/0.54 We are left with following problem, upon which TcT provides the 0.00/0.54 certificate YES(O(1),O(n^1)). 0.00/0.54 0.00/0.54 Strict DPs: 0.00/0.54 { double^#(x) -> c_1(+^#(x, x)) 0.00/0.54 , double^#(0()) -> c_2() 0.00/0.54 , double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , +^#(x, 0()) -> c_4() 0.00/0.54 , +^#(x, s(y)) -> c_5(+^#(x, y)) 0.00/0.54 , +^#(s(x), y) -> c_6(+^#(x, y)) } 0.00/0.54 Strict Trs: 0.00/0.54 { double(x) -> +(x, x) 0.00/0.54 , double(0()) -> 0() 0.00/0.54 , double(s(x)) -> s(s(double(x))) 0.00/0.54 , +(x, 0()) -> x 0.00/0.54 , +(x, s(y)) -> s(+(x, y)) 0.00/0.54 , +(s(x), y) -> s(+(x, y)) } 0.00/0.54 Obligation: 0.00/0.54 innermost runtime complexity 0.00/0.54 Answer: 0.00/0.54 YES(O(1),O(n^1)) 0.00/0.54 0.00/0.54 No rule is usable, rules are removed from the input problem. 0.00/0.54 0.00/0.54 We are left with following problem, upon which TcT provides the 0.00/0.54 certificate YES(O(1),O(n^1)). 0.00/0.54 0.00/0.54 Strict DPs: 0.00/0.54 { double^#(x) -> c_1(+^#(x, x)) 0.00/0.54 , double^#(0()) -> c_2() 0.00/0.54 , double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , +^#(x, 0()) -> c_4() 0.00/0.54 , +^#(x, s(y)) -> c_5(+^#(x, y)) 0.00/0.54 , +^#(s(x), y) -> c_6(+^#(x, y)) } 0.00/0.54 Obligation: 0.00/0.54 innermost runtime complexity 0.00/0.54 Answer: 0.00/0.54 YES(O(1),O(n^1)) 0.00/0.54 0.00/0.54 The weightgap principle applies (using the following constant 0.00/0.54 growth matrix-interpretation) 0.00/0.54 0.00/0.54 The following argument positions are usable: 0.00/0.54 Uargs(c_1) = {1}, Uargs(c_3) = {1}, Uargs(c_5) = {1}, 0.00/0.54 Uargs(c_6) = {1} 0.00/0.54 0.00/0.54 TcT has computed the following constructor-restricted matrix 0.00/0.54 interpretation. 0.00/0.54 0.00/0.54 [0] = [0] 0.00/0.54 [0] 0.00/0.54 0.00/0.54 [s](x1) = [1 0] x1 + [0] 0.00/0.54 [0 0] [0] 0.00/0.54 0.00/0.54 [double^#](x1) = [1] 0.00/0.54 [1] 0.00/0.54 0.00/0.54 [c_1](x1) = [1 0] x1 + [2] 0.00/0.54 [0 1] [1] 0.00/0.54 0.00/0.54 [+^#](x1, x2) = [0] 0.00/0.54 [1] 0.00/0.54 0.00/0.54 [c_2] = [0] 0.00/0.54 [1] 0.00/0.54 0.00/0.54 [c_3](x1) = [1 0] x1 + [1] 0.00/0.54 [0 1] [0] 0.00/0.54 0.00/0.54 [c_4] = [1] 0.00/0.54 [1] 0.00/0.54 0.00/0.54 [c_5](x1) = [1 0] x1 + [2] 0.00/0.54 [0 1] [0] 0.00/0.54 0.00/0.54 [c_6](x1) = [1 0] x1 + [2] 0.00/0.54 [0 1] [1] 0.00/0.54 0.00/0.54 The order satisfies the following ordering constraints: 0.00/0.54 0.00/0.54 [double^#(x)] = [1] 0.00/0.54 [1] 0.00/0.54 ? [2] 0.00/0.54 [2] 0.00/0.54 = [c_1(+^#(x, x))] 0.00/0.54 0.00/0.54 [double^#(0())] = [1] 0.00/0.54 [1] 0.00/0.54 > [0] 0.00/0.54 [1] 0.00/0.54 = [c_2()] 0.00/0.54 0.00/0.54 [double^#(s(x))] = [1] 0.00/0.54 [1] 0.00/0.54 ? [2] 0.00/0.54 [1] 0.00/0.54 = [c_3(double^#(x))] 0.00/0.54 0.00/0.54 [+^#(x, 0())] = [0] 0.00/0.54 [1] 0.00/0.54 ? [1] 0.00/0.54 [1] 0.00/0.54 = [c_4()] 0.00/0.54 0.00/0.54 [+^#(x, s(y))] = [0] 0.00/0.54 [1] 0.00/0.54 ? [2] 0.00/0.54 [1] 0.00/0.54 = [c_5(+^#(x, y))] 0.00/0.54 0.00/0.54 [+^#(s(x), y)] = [0] 0.00/0.54 [1] 0.00/0.54 ? [2] 0.00/0.54 [2] 0.00/0.54 = [c_6(+^#(x, y))] 0.00/0.54 0.00/0.54 0.00/0.54 Further, it can be verified that all rules not oriented are covered by the weightgap condition. 0.00/0.54 0.00/0.54 We are left with following problem, upon which TcT provides the 0.00/0.54 certificate YES(O(1),O(n^1)). 0.00/0.54 0.00/0.54 Strict DPs: 0.00/0.54 { double^#(x) -> c_1(+^#(x, x)) 0.00/0.54 , double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , +^#(x, 0()) -> c_4() 0.00/0.54 , +^#(x, s(y)) -> c_5(+^#(x, y)) 0.00/0.54 , +^#(s(x), y) -> c_6(+^#(x, y)) } 0.00/0.54 Weak DPs: { double^#(0()) -> c_2() } 0.00/0.54 Obligation: 0.00/0.54 innermost runtime complexity 0.00/0.54 Answer: 0.00/0.54 YES(O(1),O(n^1)) 0.00/0.54 0.00/0.54 We estimate the number of application of {3} by applications of 0.00/0.54 Pre({3}) = {1,4,5}. Here rules are labeled as follows: 0.00/0.54 0.00/0.54 DPs: 0.00/0.54 { 1: double^#(x) -> c_1(+^#(x, x)) 0.00/0.54 , 2: double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , 3: +^#(x, 0()) -> c_4() 0.00/0.54 , 4: +^#(x, s(y)) -> c_5(+^#(x, y)) 0.00/0.54 , 5: +^#(s(x), y) -> c_6(+^#(x, y)) 0.00/0.54 , 6: double^#(0()) -> c_2() } 0.00/0.54 0.00/0.54 We are left with following problem, upon which TcT provides the 0.00/0.54 certificate YES(O(1),O(n^1)). 0.00/0.54 0.00/0.54 Strict DPs: 0.00/0.54 { double^#(x) -> c_1(+^#(x, x)) 0.00/0.54 , double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , +^#(x, s(y)) -> c_5(+^#(x, y)) 0.00/0.54 , +^#(s(x), y) -> c_6(+^#(x, y)) } 0.00/0.54 Weak DPs: 0.00/0.54 { double^#(0()) -> c_2() 0.00/0.54 , +^#(x, 0()) -> c_4() } 0.00/0.54 Obligation: 0.00/0.54 innermost runtime complexity 0.00/0.54 Answer: 0.00/0.54 YES(O(1),O(n^1)) 0.00/0.54 0.00/0.54 The following weak DPs constitute a sub-graph of the DG that is 0.00/0.54 closed under successors. The DPs are removed. 0.00/0.54 0.00/0.54 { double^#(0()) -> c_2() 0.00/0.54 , +^#(x, 0()) -> c_4() } 0.00/0.54 0.00/0.54 We are left with following problem, upon which TcT provides the 0.00/0.54 certificate YES(O(1),O(n^1)). 0.00/0.54 0.00/0.54 Strict DPs: 0.00/0.54 { double^#(x) -> c_1(+^#(x, x)) 0.00/0.54 , double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , +^#(x, s(y)) -> c_5(+^#(x, y)) 0.00/0.54 , +^#(s(x), y) -> c_6(+^#(x, y)) } 0.00/0.54 Obligation: 0.00/0.54 innermost runtime complexity 0.00/0.54 Answer: 0.00/0.54 YES(O(1),O(n^1)) 0.00/0.54 0.00/0.54 We use the processor 'matrix interpretation of dimension 1' to 0.00/0.54 orient following rules strictly. 0.00/0.54 0.00/0.54 DPs: 0.00/0.54 { 2: double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , 4: +^#(s(x), y) -> c_6(+^#(x, y)) } 0.00/0.54 0.00/0.54 Sub-proof: 0.00/0.54 ---------- 0.00/0.54 The following argument positions are usable: 0.00/0.54 Uargs(c_1) = {1}, Uargs(c_3) = {1}, Uargs(c_5) = {1}, 0.00/0.54 Uargs(c_6) = {1} 0.00/0.54 0.00/0.54 TcT has computed the following constructor-based matrix 0.00/0.54 interpretation satisfying not(EDA). 0.00/0.54 0.00/0.54 [s](x1) = [1] x1 + [4] 0.00/0.54 0.00/0.54 [double^#](x1) = [2] x1 + [0] 0.00/0.54 0.00/0.54 [c_1](x1) = [1] x1 + [0] 0.00/0.54 0.00/0.54 [+^#](x1, x2) = [1] x1 + [0] 0.00/0.54 0.00/0.54 [c_3](x1) = [1] x1 + [1] 0.00/0.54 0.00/0.54 [c_5](x1) = [1] x1 + [0] 0.00/0.54 0.00/0.54 [c_6](x1) = [1] x1 + [1] 0.00/0.54 0.00/0.54 The order satisfies the following ordering constraints: 0.00/0.54 0.00/0.54 [double^#(x)] = [2] x + [0] 0.00/0.54 >= [1] x + [0] 0.00/0.54 = [c_1(+^#(x, x))] 0.00/0.54 0.00/0.54 [double^#(s(x))] = [2] x + [8] 0.00/0.54 > [2] x + [1] 0.00/0.54 = [c_3(double^#(x))] 0.00/0.54 0.00/0.54 [+^#(x, s(y))] = [1] x + [0] 0.00/0.54 >= [1] x + [0] 0.00/0.54 = [c_5(+^#(x, y))] 0.00/0.54 0.00/0.54 [+^#(s(x), y)] = [1] x + [4] 0.00/0.54 > [1] x + [1] 0.00/0.54 = [c_6(+^#(x, y))] 0.00/0.54 0.00/0.54 0.00/0.54 We return to the main proof. Consider the set of all dependency 0.00/0.54 pairs 0.00/0.54 0.00/0.54 : 0.00/0.54 { 1: double^#(x) -> c_1(+^#(x, x)) 0.00/0.54 , 2: double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , 3: +^#(x, s(y)) -> c_5(+^#(x, y)) 0.00/0.54 , 4: +^#(s(x), y) -> c_6(+^#(x, y)) } 0.00/0.54 0.00/0.54 Processor 'matrix interpretation of dimension 1' induces the 0.00/0.54 complexity certificate YES(?,O(n^1)) on application of dependency 0.00/0.54 pairs {2,4}. These cover all (indirect) predecessors of dependency 0.00/0.54 pairs {1,2,4}, their number of application is equally bounded. The 0.00/0.54 dependency pairs are shifted into the weak component. 0.00/0.54 0.00/0.54 We are left with following problem, upon which TcT provides the 0.00/0.54 certificate YES(O(1),O(n^1)). 0.00/0.54 0.00/0.54 Strict DPs: { +^#(x, s(y)) -> c_5(+^#(x, y)) } 0.00/0.54 Weak DPs: 0.00/0.54 { double^#(x) -> c_1(+^#(x, x)) 0.00/0.54 , double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , +^#(s(x), y) -> c_6(+^#(x, y)) } 0.00/0.54 Obligation: 0.00/0.54 innermost runtime complexity 0.00/0.54 Answer: 0.00/0.54 YES(O(1),O(n^1)) 0.00/0.54 0.00/0.54 We use the processor 'matrix interpretation of dimension 1' to 0.00/0.54 orient following rules strictly. 0.00/0.54 0.00/0.54 DPs: 0.00/0.54 { 1: +^#(x, s(y)) -> c_5(+^#(x, y)) 0.00/0.54 , 3: double^#(s(x)) -> c_3(double^#(x)) } 0.00/0.54 0.00/0.54 Sub-proof: 0.00/0.54 ---------- 0.00/0.54 The following argument positions are usable: 0.00/0.54 Uargs(c_1) = {1}, Uargs(c_3) = {1}, Uargs(c_5) = {1}, 0.00/0.54 Uargs(c_6) = {1} 0.00/0.54 0.00/0.54 TcT has computed the following constructor-based matrix 0.00/0.54 interpretation satisfying not(EDA). 0.00/0.54 0.00/0.54 [s](x1) = [1] x1 + [4] 0.00/0.54 0.00/0.54 [double^#](x1) = [1] x1 + [4] 0.00/0.54 0.00/0.54 [c_1](x1) = [1] x1 + [0] 0.00/0.54 0.00/0.54 [+^#](x1, x2) = [1] x2 + [4] 0.00/0.54 0.00/0.54 [c_3](x1) = [1] x1 + [1] 0.00/0.54 0.00/0.54 [c_5](x1) = [1] x1 + [1] 0.00/0.54 0.00/0.54 [c_6](x1) = [1] x1 + [0] 0.00/0.54 0.00/0.54 The order satisfies the following ordering constraints: 0.00/0.54 0.00/0.54 [double^#(x)] = [1] x + [4] 0.00/0.54 >= [1] x + [4] 0.00/0.54 = [c_1(+^#(x, x))] 0.00/0.54 0.00/0.54 [double^#(s(x))] = [1] x + [8] 0.00/0.54 > [1] x + [5] 0.00/0.54 = [c_3(double^#(x))] 0.00/0.54 0.00/0.54 [+^#(x, s(y))] = [1] y + [8] 0.00/0.54 > [1] y + [5] 0.00/0.54 = [c_5(+^#(x, y))] 0.00/0.54 0.00/0.54 [+^#(s(x), y)] = [1] y + [4] 0.00/0.54 >= [1] y + [4] 0.00/0.54 = [c_6(+^#(x, y))] 0.00/0.54 0.00/0.54 0.00/0.54 We return to the main proof. Consider the set of all dependency 0.00/0.54 pairs 0.00/0.54 0.00/0.54 : 0.00/0.54 { 1: +^#(x, s(y)) -> c_5(+^#(x, y)) 0.00/0.54 , 2: double^#(x) -> c_1(+^#(x, x)) 0.00/0.54 , 3: double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , 4: +^#(s(x), y) -> c_6(+^#(x, y)) } 0.00/0.54 0.00/0.54 Processor 'matrix interpretation of dimension 1' induces the 0.00/0.54 complexity certificate YES(?,O(n^1)) on application of dependency 0.00/0.54 pairs {1,3}. These cover all (indirect) predecessors of dependency 0.00/0.54 pairs {1,2,3}, their number of application is equally bounded. The 0.00/0.54 dependency pairs are shifted into the weak component. 0.00/0.54 0.00/0.54 We are left with following problem, upon which TcT provides the 0.00/0.54 certificate YES(O(1),O(1)). 0.00/0.54 0.00/0.54 Weak DPs: 0.00/0.54 { double^#(x) -> c_1(+^#(x, x)) 0.00/0.54 , double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , +^#(x, s(y)) -> c_5(+^#(x, y)) 0.00/0.54 , +^#(s(x), y) -> c_6(+^#(x, y)) } 0.00/0.54 Obligation: 0.00/0.54 innermost runtime complexity 0.00/0.54 Answer: 0.00/0.54 YES(O(1),O(1)) 0.00/0.54 0.00/0.54 The following weak DPs constitute a sub-graph of the DG that is 0.00/0.54 closed under successors. The DPs are removed. 0.00/0.54 0.00/0.54 { double^#(x) -> c_1(+^#(x, x)) 0.00/0.54 , double^#(s(x)) -> c_3(double^#(x)) 0.00/0.54 , +^#(x, s(y)) -> c_5(+^#(x, y)) 0.00/0.54 , +^#(s(x), y) -> c_6(+^#(x, y)) } 0.00/0.54 0.00/0.54 We are left with following problem, upon which TcT provides the 0.00/0.54 certificate YES(O(1),O(1)). 0.00/0.54 0.00/0.54 Rules: Empty 0.00/0.54 Obligation: 0.00/0.54 innermost runtime complexity 0.00/0.54 Answer: 0.00/0.54 YES(O(1),O(1)) 0.00/0.54 0.00/0.54 Empty rules are trivially bounded 0.00/0.54 0.00/0.54 Hurray, we answered YES(O(1),O(n^1)) 0.00/0.54 EOF