YES(O(1),O(n^1)) 0.00/0.41 YES(O(1),O(n^1)) 0.00/0.41 0.00/0.41 We are left with following problem, upon which TcT provides the 0.00/0.41 certificate YES(O(1),O(n^1)). 0.00/0.41 0.00/0.41 Strict Trs: 0.00/0.41 { loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> 0.00/0.41 loop[Ite][False][Ite][False][Ite](!EQ(x', x), 0.00/0.41 Cons(x', xs'), 0.00/0.41 Cons(x, xs), 0.00/0.41 pp, 0.00/0.41 ss) 0.00/0.41 , loop(Cons(x, xs), Nil(), pp, ss) -> False() 0.00/0.41 , loop(Nil(), s, pp, ss) -> True() 0.00/0.41 , match1(p, s) -> loop(p, s, p, s) } 0.00/0.41 Weak Trs: 0.00/0.41 { !EQ(S(x), S(y)) -> !EQ(x, y) 0.00/0.41 , !EQ(S(x), 0()) -> False() 0.00/0.41 , !EQ(0(), S(y)) -> False() 0.00/0.41 , !EQ(0(), 0()) -> True() } 0.00/0.41 Obligation: 0.00/0.41 innermost runtime complexity 0.00/0.41 Answer: 0.00/0.41 YES(O(1),O(n^1)) 0.00/0.41 0.00/0.41 We add the following weak dependency pairs: 0.00/0.41 0.00/0.41 Strict DPs: 0.00/0.41 { loop^#(Cons(x', xs'), Cons(x, xs), pp, ss) -> c_1(!EQ^#(x', x)) 0.00/0.41 , loop^#(Cons(x, xs), Nil(), pp, ss) -> c_2() 0.00/0.41 , loop^#(Nil(), s, pp, ss) -> c_3() 0.00/0.41 , match1^#(p, s) -> c_4(loop^#(p, s, p, s)) } 0.00/0.41 Weak DPs: 0.00/0.41 { !EQ^#(S(x), S(y)) -> c_5(!EQ^#(x, y)) 0.00/0.41 , !EQ^#(S(x), 0()) -> c_6() 0.00/0.41 , !EQ^#(0(), S(y)) -> c_7() 0.00/0.41 , !EQ^#(0(), 0()) -> c_8() } 0.00/0.41 0.00/0.41 and mark the set of starting terms. 0.00/0.41 0.00/0.41 We are left with following problem, upon which TcT provides the 0.00/0.41 certificate YES(O(1),O(n^1)). 0.00/0.41 0.00/0.41 Strict DPs: 0.00/0.41 { loop^#(Cons(x', xs'), Cons(x, xs), pp, ss) -> c_1(!EQ^#(x', x)) 0.00/0.41 , loop^#(Cons(x, xs), Nil(), pp, ss) -> c_2() 0.00/0.41 , loop^#(Nil(), s, pp, ss) -> c_3() 0.00/0.41 , match1^#(p, s) -> c_4(loop^#(p, s, p, s)) } 0.00/0.41 Strict Trs: 0.00/0.41 { loop(Cons(x', xs'), Cons(x, xs), pp, ss) -> 0.00/0.41 loop[Ite][False][Ite][False][Ite](!EQ(x', x), 0.00/0.41 Cons(x', xs'), 0.00/0.41 Cons(x, xs), 0.00/0.41 pp, 0.00/0.41 ss) 0.00/0.41 , loop(Cons(x, xs), Nil(), pp, ss) -> False() 0.00/0.41 , loop(Nil(), s, pp, ss) -> True() 0.00/0.41 , match1(p, s) -> loop(p, s, p, s) } 0.00/0.41 Weak DPs: 0.00/0.41 { !EQ^#(S(x), S(y)) -> c_5(!EQ^#(x, y)) 0.00/0.41 , !EQ^#(S(x), 0()) -> c_6() 0.00/0.41 , !EQ^#(0(), S(y)) -> c_7() 0.00/0.41 , !EQ^#(0(), 0()) -> c_8() } 0.00/0.41 Weak Trs: 0.00/0.41 { !EQ(S(x), S(y)) -> !EQ(x, y) 0.00/0.41 , !EQ(S(x), 0()) -> False() 0.00/0.41 , !EQ(0(), S(y)) -> False() 0.00/0.41 , !EQ(0(), 0()) -> True() } 0.00/0.41 Obligation: 0.00/0.41 innermost runtime complexity 0.00/0.41 Answer: 0.00/0.41 YES(O(1),O(n^1)) 0.00/0.41 0.00/0.41 No rule is usable, rules are removed from the input problem. 0.00/0.41 0.00/0.41 We are left with following problem, upon which TcT provides the 0.00/0.41 certificate YES(O(1),O(n^1)). 0.00/0.41 0.00/0.41 Strict DPs: 0.00/0.41 { loop^#(Cons(x', xs'), Cons(x, xs), pp, ss) -> c_1(!EQ^#(x', x)) 0.00/0.41 , loop^#(Cons(x, xs), Nil(), pp, ss) -> c_2() 0.00/0.41 , loop^#(Nil(), s, pp, ss) -> c_3() 0.00/0.41 , match1^#(p, s) -> c_4(loop^#(p, s, p, s)) } 0.00/0.41 Weak DPs: 0.00/0.41 { !EQ^#(S(x), S(y)) -> c_5(!EQ^#(x, y)) 0.00/0.41 , !EQ^#(S(x), 0()) -> c_6() 0.00/0.41 , !EQ^#(0(), S(y)) -> c_7() 0.00/0.41 , !EQ^#(0(), 0()) -> c_8() } 0.00/0.41 Obligation: 0.00/0.41 innermost runtime complexity 0.00/0.41 Answer: 0.00/0.41 YES(O(1),O(n^1)) 0.00/0.41 0.00/0.41 The weightgap principle applies (using the following constant 0.00/0.41 growth matrix-interpretation) 0.00/0.41 0.00/0.41 The following argument positions are usable: 0.00/0.41 Uargs(c_1) = {1}, Uargs(c_4) = {1}, Uargs(c_5) = {1} 0.00/0.41 0.00/0.41 TcT has computed the following constructor-restricted matrix 0.00/0.41 interpretation. 0.00/0.41 0.00/0.41 [S](x1) = [1 0] x1 + [0] 0.00/0.41 [0 0] [0] 0.00/0.41 0.00/0.41 [Cons](x1, x2) = [1 0] x1 + [0] 0.00/0.41 [0 0] [0] 0.00/0.41 0.00/0.41 [Nil] = [0] 0.00/0.41 [0] 0.00/0.41 0.00/0.41 [0] = [0] 0.00/0.41 [0] 0.00/0.41 0.00/0.41 [loop^#](x1, x2, x3, x4) = [1 1] x3 + [1 1] x4 + [2] 0.00/0.41 [2 2] [2 2] [0] 0.00/0.41 0.00/0.41 [c_1](x1) = [1 0] x1 + [1] 0.00/0.41 [0 1] [1] 0.00/0.41 0.00/0.41 [!EQ^#](x1, x2) = [0] 0.00/0.41 [1] 0.00/0.41 0.00/0.41 [c_2] = [1] 0.00/0.41 [0] 0.00/0.41 0.00/0.41 [c_3] = [1] 0.00/0.41 [0] 0.00/0.41 0.00/0.41 [match1^#](x1, x2) = [1 1] x1 + [2 2] x2 + [2] 0.00/0.41 [2 2] [2 2] [2] 0.00/0.41 0.00/0.41 [c_4](x1) = [1 0] x1 + [1] 0.00/0.41 [0 1] [2] 0.00/0.41 0.00/0.41 [c_5](x1) = [1 0] x1 + [0] 0.00/0.41 [0 1] [0] 0.00/0.41 0.00/0.41 [c_6] = [0] 0.00/0.41 [1] 0.00/0.41 0.00/0.41 [c_7] = [0] 0.00/0.41 [1] 0.00/0.41 0.00/0.41 [c_8] = [0] 0.00/0.41 [1] 0.00/0.41 0.00/0.41 The order satisfies the following ordering constraints: 0.00/0.41 0.00/0.41 [loop^#(Cons(x', xs'), Cons(x, xs), pp, ss)] = [1 1] pp + [1 1] ss + [2] 0.00/0.41 [2 2] [2 2] [0] 0.00/0.41 ? [1] 0.00/0.41 [2] 0.00/0.41 = [c_1(!EQ^#(x', x))] 0.00/0.41 0.00/0.41 [loop^#(Cons(x, xs), Nil(), pp, ss)] = [1 1] pp + [1 1] ss + [2] 0.00/0.41 [2 2] [2 2] [0] 0.00/0.41 > [1] 0.00/0.41 [0] 0.00/0.41 = [c_2()] 0.00/0.41 0.00/0.41 [loop^#(Nil(), s, pp, ss)] = [1 1] pp + [1 1] ss + [2] 0.00/0.41 [2 2] [2 2] [0] 0.00/0.41 > [1] 0.00/0.41 [0] 0.00/0.41 = [c_3()] 0.00/0.41 0.00/0.41 [!EQ^#(S(x), S(y))] = [0] 0.00/0.41 [1] 0.00/0.41 >= [0] 0.00/0.41 [1] 0.00/0.41 = [c_5(!EQ^#(x, y))] 0.00/0.41 0.00/0.41 [!EQ^#(S(x), 0())] = [0] 0.00/0.41 [1] 0.00/0.41 >= [0] 0.00/0.41 [1] 0.00/0.41 = [c_6()] 0.00/0.41 0.00/0.41 [!EQ^#(0(), S(y))] = [0] 0.00/0.41 [1] 0.00/0.41 >= [0] 0.00/0.41 [1] 0.00/0.41 = [c_7()] 0.00/0.41 0.00/0.41 [!EQ^#(0(), 0())] = [0] 0.00/0.41 [1] 0.00/0.41 >= [0] 0.00/0.41 [1] 0.00/0.41 = [c_8()] 0.00/0.41 0.00/0.41 [match1^#(p, s)] = [2 2] s + [1 1] p + [2] 0.00/0.41 [2 2] [2 2] [2] 0.00/0.41 ? [1 1] s + [1 1] p + [3] 0.00/0.41 [2 2] [2 2] [2] 0.00/0.41 = [c_4(loop^#(p, s, p, s))] 0.00/0.41 0.00/0.41 0.00/0.41 Further, it can be verified that all rules not oriented are covered by the weightgap condition. 0.00/0.41 0.00/0.41 We are left with following problem, upon which TcT provides the 0.00/0.41 certificate YES(O(1),O(1)). 0.00/0.41 0.00/0.41 Strict DPs: 0.00/0.41 { loop^#(Cons(x', xs'), Cons(x, xs), pp, ss) -> c_1(!EQ^#(x', x)) 0.00/0.41 , match1^#(p, s) -> c_4(loop^#(p, s, p, s)) } 0.00/0.41 Weak DPs: 0.00/0.41 { loop^#(Cons(x, xs), Nil(), pp, ss) -> c_2() 0.00/0.41 , loop^#(Nil(), s, pp, ss) -> c_3() 0.00/0.41 , !EQ^#(S(x), S(y)) -> c_5(!EQ^#(x, y)) 0.00/0.41 , !EQ^#(S(x), 0()) -> c_6() 0.00/0.41 , !EQ^#(0(), S(y)) -> c_7() 0.00/0.41 , !EQ^#(0(), 0()) -> c_8() } 0.00/0.41 Obligation: 0.00/0.41 innermost runtime complexity 0.00/0.41 Answer: 0.00/0.41 YES(O(1),O(1)) 0.00/0.41 0.00/0.41 We estimate the number of application of {1} by applications of 0.00/0.41 Pre({1}) = {2}. Here rules are labeled as follows: 0.00/0.41 0.00/0.41 DPs: 0.00/0.41 { 1: loop^#(Cons(x', xs'), Cons(x, xs), pp, ss) -> 0.00/0.41 c_1(!EQ^#(x', x)) 0.00/0.41 , 2: match1^#(p, s) -> c_4(loop^#(p, s, p, s)) 0.00/0.41 , 3: loop^#(Cons(x, xs), Nil(), pp, ss) -> c_2() 0.00/0.41 , 4: loop^#(Nil(), s, pp, ss) -> c_3() 0.00/0.41 , 5: !EQ^#(S(x), S(y)) -> c_5(!EQ^#(x, y)) 0.00/0.41 , 6: !EQ^#(S(x), 0()) -> c_6() 0.00/0.41 , 7: !EQ^#(0(), S(y)) -> c_7() 0.00/0.41 , 8: !EQ^#(0(), 0()) -> c_8() } 0.00/0.41 0.00/0.41 We are left with following problem, upon which TcT provides the 0.00/0.41 certificate YES(O(1),O(1)). 0.00/0.41 0.00/0.41 Strict DPs: { match1^#(p, s) -> c_4(loop^#(p, s, p, s)) } 0.00/0.41 Weak DPs: 0.00/0.41 { loop^#(Cons(x', xs'), Cons(x, xs), pp, ss) -> c_1(!EQ^#(x', x)) 0.00/0.41 , loop^#(Cons(x, xs), Nil(), pp, ss) -> c_2() 0.00/0.41 , loop^#(Nil(), s, pp, ss) -> c_3() 0.00/0.41 , !EQ^#(S(x), S(y)) -> c_5(!EQ^#(x, y)) 0.00/0.41 , !EQ^#(S(x), 0()) -> c_6() 0.00/0.41 , !EQ^#(0(), S(y)) -> c_7() 0.00/0.41 , !EQ^#(0(), 0()) -> c_8() } 0.00/0.41 Obligation: 0.00/0.41 innermost runtime complexity 0.00/0.41 Answer: 0.00/0.41 YES(O(1),O(1)) 0.00/0.41 0.00/0.41 We estimate the number of application of {1} by applications of 0.00/0.41 Pre({1}) = {}. Here rules are labeled as follows: 0.00/0.41 0.00/0.41 DPs: 0.00/0.41 { 1: match1^#(p, s) -> c_4(loop^#(p, s, p, s)) 0.00/0.41 , 2: loop^#(Cons(x', xs'), Cons(x, xs), pp, ss) -> 0.00/0.41 c_1(!EQ^#(x', x)) 0.00/0.41 , 3: loop^#(Cons(x, xs), Nil(), pp, ss) -> c_2() 0.00/0.41 , 4: loop^#(Nil(), s, pp, ss) -> c_3() 0.00/0.41 , 5: !EQ^#(S(x), S(y)) -> c_5(!EQ^#(x, y)) 0.00/0.41 , 6: !EQ^#(S(x), 0()) -> c_6() 0.00/0.41 , 7: !EQ^#(0(), S(y)) -> c_7() 0.00/0.41 , 8: !EQ^#(0(), 0()) -> c_8() } 0.00/0.41 0.00/0.41 We are left with following problem, upon which TcT provides the 0.00/0.41 certificate YES(O(1),O(1)). 0.00/0.41 0.00/0.41 Weak DPs: 0.00/0.41 { loop^#(Cons(x', xs'), Cons(x, xs), pp, ss) -> c_1(!EQ^#(x', x)) 0.00/0.41 , loop^#(Cons(x, xs), Nil(), pp, ss) -> c_2() 0.00/0.41 , loop^#(Nil(), s, pp, ss) -> c_3() 0.00/0.41 , !EQ^#(S(x), S(y)) -> c_5(!EQ^#(x, y)) 0.00/0.41 , !EQ^#(S(x), 0()) -> c_6() 0.00/0.41 , !EQ^#(0(), S(y)) -> c_7() 0.00/0.41 , !EQ^#(0(), 0()) -> c_8() 0.00/0.41 , match1^#(p, s) -> c_4(loop^#(p, s, p, s)) } 0.00/0.41 Obligation: 0.00/0.41 innermost runtime complexity 0.00/0.41 Answer: 0.00/0.41 YES(O(1),O(1)) 0.00/0.41 0.00/0.41 The following weak DPs constitute a sub-graph of the DG that is 0.00/0.41 closed under successors. The DPs are removed. 0.00/0.41 0.00/0.41 { loop^#(Cons(x', xs'), Cons(x, xs), pp, ss) -> c_1(!EQ^#(x', x)) 0.00/0.41 , loop^#(Cons(x, xs), Nil(), pp, ss) -> c_2() 0.00/0.41 , loop^#(Nil(), s, pp, ss) -> c_3() 0.00/0.41 , !EQ^#(S(x), S(y)) -> c_5(!EQ^#(x, y)) 0.00/0.41 , !EQ^#(S(x), 0()) -> c_6() 0.00/0.41 , !EQ^#(0(), S(y)) -> c_7() 0.00/0.41 , !EQ^#(0(), 0()) -> c_8() 0.00/0.41 , match1^#(p, s) -> c_4(loop^#(p, s, p, s)) } 0.00/0.41 0.00/0.41 We are left with following problem, upon which TcT provides the 0.00/0.41 certificate YES(O(1),O(1)). 0.00/0.41 0.00/0.41 Rules: Empty 0.00/0.41 Obligation: 0.00/0.41 innermost runtime complexity 0.00/0.41 Answer: 0.00/0.41 YES(O(1),O(1)) 0.00/0.41 0.00/0.41 Empty rules are trivially bounded 0.00/0.41 0.00/0.41 Hurray, we answered YES(O(1),O(n^1)) 0.00/0.41 EOF