YES(O(1),O(n^1)) 0.00/0.66 YES(O(1),O(n^1)) 0.00/0.66 0.00/0.66 We are left with following problem, upon which TcT provides the 0.00/0.66 certificate YES(O(1),O(n^1)). 0.00/0.66 0.00/0.66 Strict Trs: 0.00/0.66 { g(x, y) -> x 0.00/0.66 , g(x, y) -> y 0.00/0.66 , f(x, y, s(z)) -> s(f(0(), 1(), z)) 0.00/0.66 , f(0(), 1(), x) -> f(s(x), x, x) } 0.00/0.66 Obligation: 0.00/0.66 innermost runtime complexity 0.00/0.66 Answer: 0.00/0.66 YES(O(1),O(n^1)) 0.00/0.66 0.00/0.66 We add the following weak dependency pairs: 0.00/0.66 0.00/0.66 Strict DPs: 0.00/0.66 { g^#(x, y) -> c_1() 0.00/0.66 , g^#(x, y) -> c_2() 0.00/0.66 , f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.66 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.66 0.00/0.66 and mark the set of starting terms. 0.00/0.66 0.00/0.66 We are left with following problem, upon which TcT provides the 0.00/0.66 certificate YES(O(1),O(n^1)). 0.00/0.66 0.00/0.66 Strict DPs: 0.00/0.66 { g^#(x, y) -> c_1() 0.00/0.66 , g^#(x, y) -> c_2() 0.00/0.66 , f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.66 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.66 Strict Trs: 0.00/0.66 { g(x, y) -> x 0.00/0.66 , g(x, y) -> y 0.00/0.66 , f(x, y, s(z)) -> s(f(0(), 1(), z)) 0.00/0.66 , f(0(), 1(), x) -> f(s(x), x, x) } 0.00/0.66 Obligation: 0.00/0.66 innermost runtime complexity 0.00/0.66 Answer: 0.00/0.66 YES(O(1),O(n^1)) 0.00/0.66 0.00/0.66 No rule is usable, rules are removed from the input problem. 0.00/0.66 0.00/0.66 We are left with following problem, upon which TcT provides the 0.00/0.66 certificate YES(O(1),O(n^1)). 0.00/0.66 0.00/0.66 Strict DPs: 0.00/0.66 { g^#(x, y) -> c_1() 0.00/0.66 , g^#(x, y) -> c_2() 0.00/0.66 , f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.66 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.66 Obligation: 0.00/0.66 innermost runtime complexity 0.00/0.66 Answer: 0.00/0.66 YES(O(1),O(n^1)) 0.00/0.66 0.00/0.66 The weightgap principle applies (using the following constant 0.00/0.66 growth matrix-interpretation) 0.00/0.66 0.00/0.66 The following argument positions are usable: 0.00/0.66 Uargs(c_3) = {1}, Uargs(c_4) = {1} 0.00/0.66 0.00/0.66 TcT has computed the following constructor-restricted matrix 0.00/0.66 interpretation. 0.00/0.66 0.00/0.66 [0] = [0] 0.00/0.66 [0] 0.00/0.66 0.00/0.66 [1] = [0] 0.00/0.66 [0] 0.00/0.66 0.00/0.66 [s](x1) = [1 0] x1 + [0] 0.00/0.66 [0 0] [0] 0.00/0.66 0.00/0.66 [g^#](x1, x2) = [2] 0.00/0.66 [1] 0.00/0.66 0.00/0.66 [c_1] = [1] 0.00/0.66 [1] 0.00/0.66 0.00/0.66 [c_2] = [1] 0.00/0.66 [1] 0.00/0.66 0.00/0.66 [f^#](x1, x2, x3) = [0 0] x3 + [0] 0.00/0.66 [1 0] [0] 0.00/0.66 0.00/0.66 [c_3](x1) = [1 0] x1 + [2] 0.00/0.66 [0 1] [2] 0.00/0.66 0.00/0.66 [c_4](x1) = [1 0] x1 + [2] 0.00/0.66 [0 1] [2] 0.00/0.66 0.00/0.66 The order satisfies the following ordering constraints: 0.00/0.66 0.00/0.66 [g^#(x, y)] = [2] 0.00/0.66 [1] 0.00/0.66 > [1] 0.00/0.66 [1] 0.00/0.66 = [c_1()] 0.00/0.66 0.00/0.66 [g^#(x, y)] = [2] 0.00/0.66 [1] 0.00/0.66 > [1] 0.00/0.66 [1] 0.00/0.66 = [c_2()] 0.00/0.66 0.00/0.66 [f^#(x, y, s(z))] = [0 0] z + [0] 0.00/0.66 [1 0] [0] 0.00/0.66 ? [0 0] z + [2] 0.00/0.66 [1 0] [2] 0.00/0.66 = [c_3(f^#(0(), 1(), z))] 0.00/0.66 0.00/0.66 [f^#(0(), 1(), x)] = [0 0] x + [0] 0.00/0.66 [1 0] [0] 0.00/0.66 ? [0 0] x + [2] 0.00/0.66 [1 0] [2] 0.00/0.66 = [c_4(f^#(s(x), x, x))] 0.00/0.66 0.00/0.66 0.00/0.66 Further, it can be verified that all rules not oriented are covered by the weightgap condition. 0.00/0.66 0.00/0.66 We are left with following problem, upon which TcT provides the 0.00/0.66 certificate YES(O(1),O(n^1)). 0.00/0.66 0.00/0.66 Strict DPs: 0.00/0.66 { f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.66 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.66 Weak DPs: 0.00/0.66 { g^#(x, y) -> c_1() 0.00/0.66 , g^#(x, y) -> c_2() } 0.00/0.66 Obligation: 0.00/0.66 innermost runtime complexity 0.00/0.66 Answer: 0.00/0.66 YES(O(1),O(n^1)) 0.00/0.66 0.00/0.66 The following weak DPs constitute a sub-graph of the DG that is 0.00/0.66 closed under successors. The DPs are removed. 0.00/0.66 0.00/0.66 { g^#(x, y) -> c_1() 0.00/0.66 , g^#(x, y) -> c_2() } 0.00/0.66 0.00/0.66 We are left with following problem, upon which TcT provides the 0.00/0.66 certificate YES(O(1),O(n^1)). 0.00/0.66 0.00/0.66 Strict DPs: 0.00/0.66 { f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.66 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.66 Obligation: 0.00/0.66 innermost runtime complexity 0.00/0.66 Answer: 0.00/0.66 YES(O(1),O(n^1)) 0.00/0.66 0.00/0.66 We use the processor 'matrix interpretation of dimension 1' to 0.00/0.66 orient following rules strictly. 0.00/0.66 0.00/0.66 DPs: 0.00/0.66 { 1: f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) } 0.00/0.66 0.00/0.66 Sub-proof: 0.00/0.66 ---------- 0.00/0.66 The following argument positions are usable: 0.00/0.66 Uargs(c_3) = {1}, Uargs(c_4) = {1} 0.00/0.66 0.00/0.66 TcT has computed the following constructor-based matrix 0.00/0.66 interpretation satisfying not(EDA). 0.00/0.66 0.00/0.66 [0] = [0] 0.00/0.66 0.00/0.66 [1] = [0] 0.00/0.66 0.00/0.66 [s](x1) = [1] x1 + [2] 0.00/0.66 0.00/0.66 [f^#](x1, x2, x3) = [4] x3 + [0] 0.00/0.66 0.00/0.66 [c_3](x1) = [1] x1 + [1] 0.00/0.66 0.00/0.66 [c_4](x1) = [1] x1 + [0] 0.00/0.66 0.00/0.66 The order satisfies the following ordering constraints: 0.00/0.66 0.00/0.66 [f^#(x, y, s(z))] = [4] z + [8] 0.00/0.66 > [4] z + [1] 0.00/0.66 = [c_3(f^#(0(), 1(), z))] 0.00/0.66 0.00/0.66 [f^#(0(), 1(), x)] = [4] x + [0] 0.00/0.66 >= [4] x + [0] 0.00/0.66 = [c_4(f^#(s(x), x, x))] 0.00/0.66 0.00/0.66 0.00/0.66 We return to the main proof. Consider the set of all dependency 0.00/0.66 pairs 0.00/0.66 0.00/0.66 : 0.00/0.66 { 1: f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.66 , 2: f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.66 0.00/0.66 Processor 'matrix interpretation of dimension 1' induces the 0.00/0.66 complexity certificate YES(?,O(n^1)) on application of dependency 0.00/0.66 pairs {1}. These cover all (indirect) predecessors of dependency 0.00/0.66 pairs {1,2}, their number of application is equally bounded. The 0.00/0.66 dependency pairs are shifted into the weak component. 0.00/0.66 0.00/0.66 We are left with following problem, upon which TcT provides the 0.00/0.66 certificate YES(O(1),O(1)). 0.00/0.66 0.00/0.66 Weak DPs: 0.00/0.66 { f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.66 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.66 Obligation: 0.00/0.66 innermost runtime complexity 0.00/0.66 Answer: 0.00/0.66 YES(O(1),O(1)) 0.00/0.66 0.00/0.66 The following weak DPs constitute a sub-graph of the DG that is 0.00/0.66 closed under successors. The DPs are removed. 0.00/0.66 0.00/0.66 { f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.66 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.66 0.00/0.66 We are left with following problem, upon which TcT provides the 0.00/0.66 certificate YES(O(1),O(1)). 0.00/0.66 0.00/0.66 Rules: Empty 0.00/0.66 Obligation: 0.00/0.66 innermost runtime complexity 0.00/0.66 Answer: 0.00/0.66 YES(O(1),O(1)) 0.00/0.66 0.00/0.66 Empty rules are trivially bounded 0.00/0.66 0.00/0.66 Hurray, we answered YES(O(1),O(n^1)) 0.00/0.66 EOF