YES(O(1), O(n^1)) 0.00/0.70 YES(O(1), O(n^1)) 0.00/0.71 0.00/0.71 0.00/0.71 0.00/0.71 0.00/0.71 0.00/0.71 Runtime Complexity (innermost) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml.xml 0.00/0.71 0.00/0.71 0.00/0.71
0.00/0.71 0.00/0.71 0.00/0.71
0.00/0.71
0.00/0.71

(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(g(x), y, y) → g(f(x, x, y))

Rewrite Strategy: INNERMOST
0.00/0.71
0.00/0.71

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT
0.00/0.71
0.00/0.71

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(g(z0), z1, z1) → g(f(z0, z0, z1))
Tuples:

F(g(z0), z1, z1) → c(F(z0, z0, z1))
S tuples:

F(g(z0), z1, z1) → c(F(z0, z0, z1))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

0.00/0.71
0.00/0.71

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(g(z0), z1, z1) → c(F(z0, z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

F(g(z0), z1, z1) → c(F(z0, z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation : 0.00/0.71

POL(F(x1, x2, x3)) = [3]x1    0.00/0.71
POL(c(x1)) = x1    0.00/0.71
POL(g(x1)) = [1] + x1   
0.00/0.71
0.00/0.71

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(g(z0), z1, z1) → g(f(z0, z0, z1))
Tuples:

F(g(z0), z1, z1) → c(F(z0, z0, z1))
S tuples:none
K tuples:

F(g(z0), z1, z1) → c(F(z0, z0, z1))
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

0.00/0.71
0.00/0.71

(5) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty
0.00/0.71
0.00/0.71

(6) BOUNDS(O(1), O(1))

0.00/0.71
0.00/0.71
0.00/0.73 EOF