YES(O(1), O(n^1)) 79.26/22.97 YES(O(1), O(n^1)) 79.26/23.00 79.26/23.00 79.26/23.00 79.26/23.00 79.26/23.00 79.26/23.00 Runtime Complexity (innermost) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml.xml 79.26/23.00 79.26/23.00 79.26/23.00
79.26/23.00 79.26/23.00 79.26/23.00
79.26/23.00
79.26/23.00

(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(f(x)) → mark(f(f(x))) 79.26/23.00
chk(no(f(x))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))) 79.26/23.00
mat(f(x), f(y)) → f(mat(x, y)) 79.26/23.00
chk(no(c)) → active(c) 79.26/23.00
mat(f(x), c) → no(c) 79.26/23.00
f(active(x)) → active(f(x)) 79.26/23.00
f(no(x)) → no(f(x)) 79.26/23.00
f(mark(x)) → mark(f(x)) 79.26/23.00
tp(mark(x)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))

Rewrite Strategy: INNERMOST
79.26/23.00
79.26/23.00

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT
79.26/23.00
79.26/23.00

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.26/23.00
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.26/23.00
chk(no(c)) → active(c) 79.26/23.00
mat(f(z0), f(y)) → f(mat(z0, y)) 79.26/23.00
mat(f(z0), c) → no(c) 79.26/23.00
f(active(z0)) → active(f(z0)) 79.26/23.00
f(no(z0)) → no(f(z0)) 79.26/23.00
f(mark(z0)) → mark(f(z0)) 79.26/23.00
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

ACTIVE(f(z0)) → c1(F(f(z0)), F(z0)) 79.26/23.00
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0), F(f(f(f(f(f(f(f(f(f(X)))))))))), F(f(f(f(f(f(f(f(f(X))))))))), F(f(f(f(f(f(f(f(X)))))))), F(f(f(f(f(f(f(X))))))), F(f(f(f(f(f(X)))))), F(f(f(f(f(X))))), F(f(f(f(X)))), F(f(f(X))), F(f(X)), F(X)) 79.26/23.00
CHK(no(c)) → c3(ACTIVE(c)) 79.26/23.00
MAT(f(z0), f(y)) → c4(F(mat(z0, y)), MAT(z0, y)) 79.26/23.00
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.26/23.00
F(no(z0)) → c7(F(z0)) 79.26/23.00
F(mark(z0)) → c8(F(z0)) 79.26/23.00
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0), F(f(f(f(f(f(f(f(f(f(X)))))))))), F(f(f(f(f(f(f(f(f(X))))))))), F(f(f(f(f(f(f(f(X)))))))), F(f(f(f(f(f(f(X))))))), F(f(f(f(f(f(X)))))), F(f(f(f(f(X))))), F(f(f(f(X)))), F(f(f(X))), F(f(X)), F(X))
S tuples:

ACTIVE(f(z0)) → c1(F(f(z0)), F(z0)) 79.26/23.00
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0), F(f(f(f(f(f(f(f(f(f(X)))))))))), F(f(f(f(f(f(f(f(f(X))))))))), F(f(f(f(f(f(f(f(X)))))))), F(f(f(f(f(f(f(X))))))), F(f(f(f(f(f(X)))))), F(f(f(f(f(X))))), F(f(f(f(X)))), F(f(f(X))), F(f(X)), F(X)) 79.26/23.00
CHK(no(c)) → c3(ACTIVE(c)) 79.26/23.00
MAT(f(z0), f(y)) → c4(F(mat(z0, y)), MAT(z0, y)) 79.26/23.00
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.26/23.00
F(no(z0)) → c7(F(z0)) 79.26/23.00
F(mark(z0)) → c8(F(z0)) 79.26/23.00
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0), F(f(f(f(f(f(f(f(f(f(X)))))))))), F(f(f(f(f(f(f(f(f(X))))))))), F(f(f(f(f(f(f(f(X)))))))), F(f(f(f(f(f(f(X))))))), F(f(f(f(f(f(X)))))), F(f(f(f(f(X))))), F(f(f(f(X)))), F(f(f(X))), F(f(X)), F(X))
K tuples:none
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

ACTIVE, CHK, MAT, F, TP

Compound Symbols:

c1, c2, c3, c4, c6, c7, c8, c9

79.26/23.00
79.26/23.00

(3) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 24 trailing tuple parts
79.26/23.00
79.26/23.00

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.26/23.00
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.26/23.00
chk(no(c)) → active(c) 79.26/23.00
mat(f(z0), f(y)) → f(mat(z0, y)) 79.26/23.00
mat(f(z0), c) → no(c) 79.26/23.00
f(active(z0)) → active(f(z0)) 79.26/23.00
f(no(z0)) → no(f(z0)) 79.26/23.00
f(mark(z0)) → mark(f(z0)) 79.26/23.00
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.06
F(no(z0)) → c7(F(z0)) 79.89/23.06
F(mark(z0)) → c8(F(z0)) 79.89/23.06
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.06
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.06
CHK(no(c)) → c3 79.89/23.06
MAT(f(z0), f(y)) → c4 79.89/23.06
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.06
F(no(z0)) → c7(F(z0)) 79.89/23.06
F(mark(z0)) → c8(F(z0)) 79.89/23.06
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.06
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.06
CHK(no(c)) → c3 79.89/23.06
MAT(f(z0), f(y)) → c4 79.89/23.06
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))
K tuples:none
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c2, c3, c4, c9

79.89/23.09
79.89/23.09

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

CHK(no(c)) → c3 79.89/23.09
MAT(f(z0), f(y)) → c4
79.89/23.09
79.89/23.09

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.09
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.09
chk(no(c)) → active(c) 79.89/23.09
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.09
mat(f(z0), c) → no(c) 79.89/23.09
f(active(z0)) → active(f(z0)) 79.89/23.09
f(no(z0)) → no(f(z0)) 79.89/23.09
f(mark(z0)) → mark(f(z0)) 79.89/23.09
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(no(z0)) → c7(F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
MAT(f(z0), f(y)) → c4 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(no(z0)) → c7(F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
MAT(f(z0), f(y)) → c4 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))
K tuples:none
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c2, c3, c4, c9

79.89/23.09
79.89/23.09

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

MAT(f(z0), f(y)) → c4
We considered the (Usable) Rules:

mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.09
mat(f(z0), c) → no(c) 79.89/23.09
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.09
chk(no(c)) → active(c) 79.89/23.09
f(active(z0)) → active(f(z0)) 79.89/23.09
f(no(z0)) → no(f(z0)) 79.89/23.09
f(mark(z0)) → mark(f(z0)) 79.89/23.09
active(f(z0)) → mark(f(f(z0)))
And the Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(no(z0)) → c7(F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
MAT(f(z0), f(y)) → c4 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))
The order we found is given by the following interpretation:
Polynomial interpretation : 79.89/23.09

POL(ACTIVE(x1)) = 0    79.89/23.09
POL(CHK(x1)) = x1    79.89/23.09
POL(F(x1)) = 0    79.89/23.09
POL(MAT(x1, x2)) = x2    79.89/23.09
POL(TP(x1)) = [2]x1    79.89/23.09
POL(X) = 0    79.89/23.09
POL(active(x1)) = [4]x1    79.89/23.09
POL(c) = 0    79.89/23.09
POL(c1(x1)) = x1    79.89/23.09
POL(c2(x1, x2, x3)) = x1 + x2 + x3    79.89/23.09
POL(c3) = 0    79.89/23.09
POL(c4) = 0    79.89/23.09
POL(c6(x1, x2)) = x1 + x2    79.89/23.09
POL(c7(x1)) = x1    79.89/23.09
POL(c8(x1)) = x1    79.89/23.09
POL(c9(x1, x2, x3)) = x1 + x2 + x3    79.89/23.09
POL(chk(x1)) = x1    79.89/23.09
POL(f(x1)) = [4]x1    79.89/23.09
POL(mark(x1)) = x1    79.89/23.09
POL(mat(x1, x2)) = 0    79.89/23.09
POL(no(x1)) = x1    79.89/23.09
POL(y) = [4]   
79.89/23.09
79.89/23.09

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.09
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.09
chk(no(c)) → active(c) 79.89/23.09
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.09
mat(f(z0), c) → no(c) 79.89/23.09
f(active(z0)) → active(f(z0)) 79.89/23.09
f(no(z0)) → no(f(z0)) 79.89/23.09
f(mark(z0)) → mark(f(z0)) 79.89/23.09
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(no(z0)) → c7(F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
MAT(f(z0), f(y)) → c4 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(no(z0)) → c7(F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))
K tuples:

MAT(f(z0), f(y)) → c4
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c2, c3, c4, c9

79.89/23.09
79.89/23.09

(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(no(z0)) → c7(F(z0))
We considered the (Usable) Rules:

mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.09
mat(f(z0), c) → no(c) 79.89/23.09
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.09
chk(no(c)) → active(c) 79.89/23.09
f(active(z0)) → active(f(z0)) 79.89/23.09
f(no(z0)) → no(f(z0)) 79.89/23.09
f(mark(z0)) → mark(f(z0)) 79.89/23.09
active(f(z0)) → mark(f(f(z0)))
And the Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(no(z0)) → c7(F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
MAT(f(z0), f(y)) → c4 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))
The order we found is given by the following interpretation:
Polynomial interpretation : 79.89/23.09

POL(ACTIVE(x1)) = [4]x1    79.89/23.09
POL(CHK(x1)) = 0    79.89/23.09
POL(F(x1)) = [4]x1    79.89/23.09
POL(MAT(x1, x2)) = 0    79.89/23.09
POL(TP(x1)) = 0    79.89/23.09
POL(X) = 0    79.89/23.09
POL(active(x1)) = [4]x1    79.89/23.09
POL(c) = 0    79.89/23.09
POL(c1(x1)) = x1    79.89/23.09
POL(c2(x1, x2, x3)) = x1 + x2 + x3    79.89/23.09
POL(c3) = 0    79.89/23.09
POL(c4) = 0    79.89/23.09
POL(c6(x1, x2)) = x1 + x2    79.89/23.09
POL(c7(x1)) = x1    79.89/23.09
POL(c8(x1)) = x1    79.89/23.09
POL(c9(x1, x2, x3)) = x1 + x2 + x3    79.89/23.09
POL(chk(x1)) = 0    79.89/23.09
POL(f(x1)) = x1    79.89/23.09
POL(mark(x1)) = x1    79.89/23.09
POL(mat(x1, x2)) = 0    79.89/23.09
POL(no(x1)) = [1] + x1    79.89/23.09
POL(y) = 0   
79.89/23.09
79.89/23.09

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.09
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.09
chk(no(c)) → active(c) 79.89/23.09
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.09
mat(f(z0), c) → no(c) 79.89/23.09
f(active(z0)) → active(f(z0)) 79.89/23.09
f(no(z0)) → no(f(z0)) 79.89/23.09
f(mark(z0)) → mark(f(z0)) 79.89/23.09
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(no(z0)) → c7(F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
MAT(f(z0), f(y)) → c4 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.09
F(no(z0)) → c7(F(z0))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c2, c3, c4, c9

79.89/23.09
79.89/23.09

(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) by

CHK(no(f(f(y)))) → c2(F(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.09
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))
79.89/23.09
79.89/23.09

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.09
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.09
chk(no(c)) → active(c) 79.89/23.09
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.09
mat(f(z0), c) → no(c) 79.89/23.09
f(active(z0)) → active(f(z0)) 79.89/23.09
f(no(z0)) → no(f(z0)) 79.89/23.09
f(mark(z0)) → mark(f(z0)) 79.89/23.09
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(no(z0)) → c7(F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
MAT(f(z0), f(y)) → c4 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(f(f(y)))) → c2(F(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.09
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(f(f(y)))) → c2(F(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.09
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.09
F(no(z0)) → c7(F(z0))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c9, c2

79.89/23.09
79.89/23.09

(13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts
79.89/23.09
79.89/23.09

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.09
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.09
chk(no(c)) → active(c) 79.89/23.09
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.09
mat(f(z0), c) → no(c) 79.89/23.09
f(active(z0)) → active(f(z0)) 79.89/23.09
f(no(z0)) → no(f(z0)) 79.89/23.09
f(mark(z0)) → mark(f(z0)) 79.89/23.09
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(no(z0)) → c7(F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
MAT(f(z0), f(y)) → c4 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.09
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.09
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.09
F(no(z0)) → c7(F(z0))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c9, c2

79.89/23.09
79.89/23.09

(15) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

CHK(no(c)) → c3 79.89/23.09
MAT(f(z0), f(y)) → c4
79.89/23.09
79.89/23.09

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.09
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.09
chk(no(c)) → active(c) 79.89/23.09
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.09
mat(f(z0), c) → no(c) 79.89/23.09
f(active(z0)) → active(f(z0)) 79.89/23.09
f(no(z0)) → no(f(z0)) 79.89/23.09
f(mark(z0)) → mark(f(z0)) 79.89/23.09
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(no(z0)) → c7(F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
MAT(f(z0), f(y)) → c4 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.09
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.09
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.09
F(no(z0)) → c7(F(z0))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c9, c2

79.89/23.09
79.89/23.09

(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
We considered the (Usable) Rules:

chk(no(c)) → active(c) 79.89/23.09
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.09
mat(f(z0), c) → no(c) 79.89/23.09
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.09
f(active(z0)) → active(f(z0)) 79.89/23.09
f(no(z0)) → no(f(z0)) 79.89/23.09
f(mark(z0)) → mark(f(z0)) 79.89/23.09
active(f(z0)) → mark(f(f(z0)))
And the Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.09
F(no(z0)) → c7(F(z0)) 79.89/23.09
F(mark(z0)) → c8(F(z0)) 79.89/23.09
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.09
CHK(no(c)) → c3 79.89/23.09
MAT(f(z0), f(y)) → c4 79.89/23.09
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.09
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.09
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
The order we found is given by the following interpretation:
Polynomial interpretation : 79.89/23.09

POL(ACTIVE(x1)) = 0    79.89/23.09
POL(CHK(x1)) = [4]x1    79.89/23.09
POL(F(x1)) = 0    79.89/23.09
POL(MAT(x1, x2)) = 0    79.89/23.09
POL(TP(x1)) = 0    79.89/23.09
POL(X) = 0    79.89/23.09
POL(active(x1)) = 0    79.89/23.09
POL(c) = 0    79.89/23.09
POL(c1(x1)) = x1    79.89/23.09
POL(c2(x1, x2)) = x1 + x2    79.89/23.10
POL(c3) = 0    79.89/23.10
POL(c4) = 0    79.89/23.10
POL(c6(x1, x2)) = x1 + x2    79.89/23.10
POL(c7(x1)) = x1    79.89/23.10
POL(c8(x1)) = x1    79.89/23.10
POL(c9(x1, x2, x3)) = x1 + x2 + x3    79.89/23.10
POL(chk(x1)) = 0    79.89/23.10
POL(f(x1)) = x1    79.89/23.10
POL(mark(x1)) = 0    79.89/23.10
POL(mat(x1, x2)) = 0    79.89/23.10
POL(no(x1)) = x1    79.89/23.10
POL(y) = [2]   
79.89/23.10
79.89/23.10

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.10
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.10
chk(no(c)) → active(c) 79.89/23.10
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.10
mat(f(z0), c) → no(c) 79.89/23.10
f(active(z0)) → active(f(z0)) 79.89/23.10
f(no(z0)) → no(f(z0)) 79.89/23.10
f(mark(z0)) → mark(f(z0)) 79.89/23.10
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
MAT(f(z0), f(y)) → c4 79.89/23.10
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c9, c2

79.89/23.10
79.89/23.10

(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)) by

TP(mark(f(y))) → c9(TP(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))
79.89/23.10
79.89/23.10

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.10
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.10
chk(no(c)) → active(c) 79.89/23.10
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.10
mat(f(z0), c) → no(c) 79.89/23.10
f(active(z0)) → active(f(z0)) 79.89/23.10
f(no(z0)) → no(f(z0)) 79.89/23.10
f(mark(z0)) → mark(f(z0)) 79.89/23.10
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
MAT(f(z0), f(y)) → c4 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(f(y))) → c9(TP(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(f(y))) → c9(TP(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c2, c9

79.89/23.10
79.89/23.10

(21) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts
79.89/23.10
79.89/23.10

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.10
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.10
chk(no(c)) → active(c) 79.89/23.10
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.10
mat(f(z0), c) → no(c) 79.89/23.10
f(active(z0)) → active(f(z0)) 79.89/23.10
f(no(z0)) → no(f(z0)) 79.89/23.10
f(mark(z0)) → mark(f(z0)) 79.89/23.10
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
MAT(f(z0), f(y)) → c4 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c2, c9

79.89/23.10
79.89/23.10

(23) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC
79.89/23.10
79.89/23.10

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.10
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.10
chk(no(c)) → active(c) 79.89/23.10
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.10
mat(f(z0), c) → no(c) 79.89/23.10
f(active(z0)) → active(f(z0)) 79.89/23.10
f(no(z0)) → no(f(z0)) 79.89/23.10
f(mark(z0)) → mark(f(z0)) 79.89/23.10
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
MAT(f(z0), f(y)) → c4 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.10
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.10
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c2, c9, c5

79.89/23.10
79.89/23.10

(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing nodes:

TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
MAT(f(z0), f(y)) → c4
79.89/23.10
79.89/23.10

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.10
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.10
chk(no(c)) → active(c) 79.89/23.10
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.10
mat(f(z0), c) → no(c) 79.89/23.10
f(active(z0)) → active(f(z0)) 79.89/23.10
f(no(z0)) → no(f(z0)) 79.89/23.10
f(mark(z0)) → mark(f(z0)) 79.89/23.10
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
MAT(f(z0), f(y)) → c4 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.10
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.10
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c2, c9, c5

79.89/23.10
79.89/23.10

(27) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.10
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
We considered the (Usable) Rules:

mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.10
mat(f(z0), c) → no(c) 79.89/23.10
chk(no(c)) → active(c) 79.89/23.10
f(active(z0)) → active(f(z0)) 79.89/23.10
f(no(z0)) → no(f(z0)) 79.89/23.10
f(mark(z0)) → mark(f(z0)) 79.89/23.10
active(f(z0)) → mark(f(f(z0)))
And the Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
MAT(f(z0), f(y)) → c4 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.10
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
The order we found is given by the following interpretation:
Polynomial interpretation : 79.89/23.10

POL(ACTIVE(x1)) = 0    79.89/23.10
POL(CHK(x1)) = 0    79.89/23.10
POL(F(x1)) = 0    79.89/23.10
POL(MAT(x1, x2)) = 0    79.89/23.10
POL(TP(x1)) = [1]    79.89/23.10
POL(X) = 0    79.89/23.10
POL(active(x1)) = 0    79.89/23.10
POL(c) = 0    79.89/23.10
POL(c1(x1)) = x1    79.89/23.10
POL(c2(x1, x2)) = x1 + x2    79.89/23.10
POL(c3) = 0    79.89/23.10
POL(c4) = 0    79.89/23.10
POL(c5(x1)) = x1    79.89/23.10
POL(c6(x1, x2)) = x1 + x2    79.89/23.10
POL(c7(x1)) = x1    79.89/23.10
POL(c8(x1)) = x1    79.89/23.10
POL(c9(x1, x2)) = x1 + x2    79.89/23.10
POL(chk(x1)) = 0    79.89/23.10
POL(f(x1)) = 0    79.89/23.10
POL(mark(x1)) = 0    79.89/23.10
POL(mat(x1, x2)) = 0    79.89/23.10
POL(no(x1)) = 0    79.89/23.10
POL(y) = 0   
79.89/23.10
79.89/23.10

(28) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.10
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.10
chk(no(c)) → active(c) 79.89/23.10
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.10
mat(f(z0), c) → no(c) 79.89/23.10
f(active(z0)) → active(f(z0)) 79.89/23.10
f(no(z0)) → no(f(z0)) 79.89/23.10
f(mark(z0)) → mark(f(z0)) 79.89/23.10
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
MAT(f(z0), f(y)) → c4 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.10
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.10
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c2, c9, c5

79.89/23.10
79.89/23.10

(29) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

CHK(no(c)) → c3 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
We considered the (Usable) Rules:

mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.10
mat(f(z0), c) → no(c) 79.89/23.10
chk(no(c)) → active(c) 79.89/23.10
f(active(z0)) → active(f(z0)) 79.89/23.10
f(no(z0)) → no(f(z0)) 79.89/23.10
f(mark(z0)) → mark(f(z0)) 79.89/23.10
active(f(z0)) → mark(f(f(z0)))
And the Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
MAT(f(z0), f(y)) → c4 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.10
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
The order we found is given by the following interpretation:
Polynomial interpretation : 79.89/23.10

POL(ACTIVE(x1)) = 0    79.89/23.10
POL(CHK(x1)) = [1]    79.89/23.10
POL(F(x1)) = 0    79.89/23.10
POL(MAT(x1, x2)) = 0    79.89/23.10
POL(TP(x1)) = x1    79.89/23.10
POL(X) = 0    79.89/23.10
POL(active(x1)) = 0    79.89/23.10
POL(c) = [4]    79.89/23.10
POL(c1(x1)) = x1    79.89/23.10
POL(c2(x1, x2)) = x1 + x2    79.89/23.10
POL(c3) = 0    79.89/23.10
POL(c4) = 0    79.89/23.10
POL(c5(x1)) = x1    79.89/23.10
POL(c6(x1, x2)) = x1 + x2    79.89/23.10
POL(c7(x1)) = x1    79.89/23.10
POL(c8(x1)) = x1    79.89/23.10
POL(c9(x1, x2)) = x1 + x2    79.89/23.10
POL(chk(x1)) = [2]    79.89/23.10
POL(f(x1)) = [4] + [4]x1    79.89/23.10
POL(mark(x1)) = x1    79.89/23.10
POL(mat(x1, x2)) = [4]x1    79.89/23.10
POL(no(x1)) = x1    79.89/23.10
POL(y) = [1]   
79.89/23.10
79.89/23.10

(30) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.10
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.10
chk(no(c)) → active(c) 79.89/23.10
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.10
mat(f(z0), c) → no(c) 79.89/23.10
f(active(z0)) → active(f(z0)) 79.89/23.10
f(no(z0)) → no(f(z0)) 79.89/23.10
f(mark(z0)) → mark(f(z0)) 79.89/23.10
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(no(z0)) → c7(F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.10
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.10
CHK(no(c)) → c3 79.89/23.10
MAT(f(z0), f(y)) → c4 79.89/23.10
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.10
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.10
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.10
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.10
F(mark(z0)) → c8(F(z0)) 79.89/23.11
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.11
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.11
F(no(z0)) → c7(F(z0)) 79.89/23.11
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.11
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.11
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.11
CHK(no(c)) → c3 79.89/23.11
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c2, c9, c5

79.89/23.11
79.89/23.11

(31) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
We considered the (Usable) Rules:

mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.11
mat(f(z0), c) → no(c) 79.89/23.11
chk(no(c)) → active(c) 79.89/23.11
f(active(z0)) → active(f(z0)) 79.89/23.11
f(no(z0)) → no(f(z0)) 79.89/23.11
f(mark(z0)) → mark(f(z0)) 79.89/23.11
active(f(z0)) → mark(f(f(z0)))
And the Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.11
F(no(z0)) → c7(F(z0)) 79.89/23.11
F(mark(z0)) → c8(F(z0)) 79.89/23.11
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.11
CHK(no(c)) → c3 79.89/23.11
MAT(f(z0), f(y)) → c4 79.89/23.11
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.11
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.11
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
The order we found is given by the following interpretation:
Polynomial interpretation : 79.89/23.11

POL(ACTIVE(x1)) = 0    79.89/23.11
POL(CHK(x1)) = [2]x1    79.89/23.11
POL(F(x1)) = 0    79.89/23.11
POL(MAT(x1, x2)) = 0    79.89/23.11
POL(TP(x1)) = [2]    79.89/23.11
POL(X) = 0    79.89/23.11
POL(active(x1)) = 0    79.89/23.11
POL(c) = 0    79.89/23.11
POL(c1(x1)) = x1    79.89/23.11
POL(c2(x1, x2)) = x1 + x2    79.89/23.11
POL(c3) = 0    79.89/23.11
POL(c4) = 0    79.89/23.11
POL(c5(x1)) = x1    79.89/23.11
POL(c6(x1, x2)) = x1 + x2    79.89/23.11
POL(c7(x1)) = x1    79.89/23.11
POL(c8(x1)) = x1    79.89/23.11
POL(c9(x1, x2)) = x1 + x2    79.89/23.11
POL(chk(x1)) = [4]    79.89/23.11
POL(f(x1)) = [1]    79.89/23.11
POL(mark(x1)) = 0    79.89/23.11
POL(mat(x1, x2)) = x2    79.89/23.11
POL(no(x1)) = x1    79.89/23.11
POL(y) = 0   
79.89/23.11
79.89/23.11

(32) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.11
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.11
chk(no(c)) → active(c) 79.89/23.11
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.11
mat(f(z0), c) → no(c) 79.89/23.11
f(active(z0)) → active(f(z0)) 79.89/23.11
f(no(z0)) → no(f(z0)) 79.89/23.11
f(mark(z0)) → mark(f(z0)) 79.89/23.11
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.11
F(no(z0)) → c7(F(z0)) 79.89/23.11
F(mark(z0)) → c8(F(z0)) 79.89/23.11
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.11
CHK(no(c)) → c3 79.89/23.11
MAT(f(z0), f(y)) → c4 79.89/23.11
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.11
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.11
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
S tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.11
F(mark(z0)) → c8(F(z0)) 79.89/23.11
ACTIVE(f(z0)) → c1(F(z0))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.11
F(no(z0)) → c7(F(z0)) 79.89/23.11
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.11
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.11
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.11
CHK(no(c)) → c3 79.89/23.11
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c2, c9, c5

79.89/23.11
79.89/23.11

(33) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.11
ACTIVE(f(z0)) → c1(F(z0))
We considered the (Usable) Rules:

mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.11
mat(f(z0), c) → no(c) 79.89/23.11
chk(no(c)) → active(c) 79.89/23.11
f(active(z0)) → active(f(z0)) 79.89/23.11
f(no(z0)) → no(f(z0)) 79.89/23.11
f(mark(z0)) → mark(f(z0)) 79.89/23.11
active(f(z0)) → mark(f(f(z0)))
And the Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.11
F(no(z0)) → c7(F(z0)) 79.89/23.11
F(mark(z0)) → c8(F(z0)) 79.89/23.11
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.11
CHK(no(c)) → c3 79.89/23.11
MAT(f(z0), f(y)) → c4 79.89/23.11
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.11
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.11
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
The order we found is given by the following interpretation:
Polynomial interpretation : 79.89/23.11

POL(ACTIVE(x1)) = x1    79.89/23.11
POL(CHK(x1)) = [2]x1    79.89/23.11
POL(F(x1)) = [2]x1    79.89/23.11
POL(MAT(x1, x2)) = [1] + x2    79.89/23.11
POL(TP(x1)) = [4]    79.89/23.11
POL(X) = 0    79.89/23.11
POL(active(x1)) = [1] + [2]x1    79.89/23.11
POL(c) = 0    79.89/23.11
POL(c1(x1)) = x1    79.89/23.11
POL(c2(x1, x2)) = x1 + x2    79.89/23.11
POL(c3) = 0    79.89/23.11
POL(c4) = 0    79.89/23.11
POL(c5(x1)) = x1    79.89/23.11
POL(c6(x1, x2)) = x1 + x2    79.89/23.11
POL(c7(x1)) = x1    79.89/23.11
POL(c8(x1)) = x1    79.89/23.11
POL(c9(x1, x2)) = x1 + x2    79.89/23.11
POL(chk(x1)) = [1]    79.89/23.11
POL(f(x1)) = [1] + [2]x1    79.89/23.11
POL(mark(x1)) = x1    79.89/23.11
POL(mat(x1, x2)) = [2]x2    79.89/23.11
POL(no(x1)) = x1    79.89/23.11
POL(y) = 0   
79.89/23.11
79.89/23.11

(34) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.11
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 79.89/23.11
chk(no(c)) → active(c) 79.89/23.11
mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.11
mat(f(z0), c) → no(c) 79.89/23.11
f(active(z0)) → active(f(z0)) 79.89/23.11
f(no(z0)) → no(f(z0)) 79.89/23.11
f(mark(z0)) → mark(f(z0)) 79.89/23.11
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.11
F(no(z0)) → c7(F(z0)) 79.89/23.11
F(mark(z0)) → c8(F(z0)) 79.89/23.11
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.11
CHK(no(c)) → c3 79.89/23.11
MAT(f(z0), f(y)) → c4 79.89/23.11
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.11
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.11
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
S tuples:

F(mark(z0)) → c8(F(z0))
K tuples:

MAT(f(z0), f(y)) → c4 79.89/23.11
F(no(z0)) → c7(F(z0)) 79.89/23.11
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.11
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.11
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.11
CHK(no(c)) → c3 79.89/23.11
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.11
ACTIVE(f(z0)) → c1(F(z0))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c2, c9, c5

79.89/23.11
79.89/23.11

(35) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(mark(z0)) → c8(F(z0))
We considered the (Usable) Rules:

mat(f(z0), f(y)) → f(mat(z0, y)) 79.89/23.11
mat(f(z0), c) → no(c) 79.89/23.11
chk(no(c)) → active(c) 79.89/23.11
f(active(z0)) → active(f(z0)) 79.89/23.11
f(no(z0)) → no(f(z0)) 79.89/23.11
f(mark(z0)) → mark(f(z0)) 79.89/23.11
active(f(z0)) → mark(f(f(z0)))
And the Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 79.89/23.11
F(no(z0)) → c7(F(z0)) 79.89/23.11
F(mark(z0)) → c8(F(z0)) 79.89/23.11
ACTIVE(f(z0)) → c1(F(z0)) 79.89/23.11
CHK(no(c)) → c3 79.89/23.11
MAT(f(z0), f(y)) → c4 79.89/23.11
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 79.89/23.11
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 79.89/23.11
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 79.89/23.11
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
The order we found is given by the following interpretation:
Polynomial interpretation : 79.89/23.11

POL(ACTIVE(x1)) = [1] + x1    79.89/23.11
POL(CHK(x1)) = [3]x1    79.89/23.11
POL(F(x1)) = x1    79.89/23.11
POL(MAT(x1, x2)) = x2    79.89/23.11
POL(TP(x1)) = [3]    79.89/23.11
POL(X) = 0    79.89/23.11
POL(active(x1)) = [2] + [5]x1    79.89/23.11
POL(c) = 0    79.89/23.11
POL(c1(x1)) = x1    79.89/23.11
POL(c2(x1, x2)) = x1 + x2    79.89/23.11
POL(c3) = 0    79.89/23.11
POL(c4) = 0    79.89/23.11
POL(c5(x1)) = x1    79.89/23.11
POL(c6(x1, x2)) = x1 + x2    79.89/23.11
POL(c7(x1)) = x1    79.89/23.11
POL(c8(x1)) = x1    79.89/23.11
POL(c9(x1, x2)) = x1 + x2    79.89/23.11
POL(chk(x1)) = [3]    79.89/23.11
POL(f(x1)) = [1] + [4]x1    79.89/23.11
POL(mark(x1)) = [2] + x1    79.89/23.11
POL(mat(x1, x2)) = x2    79.89/23.11
POL(no(x1)) = x1    79.89/23.11
POL(y) = 0   
79.89/23.11
79.89/23.11

(36) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(z0)) → mark(f(f(z0))) 79.89/23.11
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))) 80.29/23.12
chk(no(c)) → active(c) 80.29/23.12
mat(f(z0), f(y)) → f(mat(z0, y)) 80.29/23.12
mat(f(z0), c) → no(c) 80.29/23.12
f(active(z0)) → active(f(z0)) 80.29/23.12
f(no(z0)) → no(f(z0)) 80.29/23.12
f(mark(z0)) → mark(f(z0)) 80.29/23.12
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:

F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 80.29/23.12
F(no(z0)) → c7(F(z0)) 80.29/23.12
F(mark(z0)) → c8(F(z0)) 80.29/23.12
ACTIVE(f(z0)) → c1(F(z0)) 80.29/23.12
CHK(no(c)) → c3 80.29/23.12
MAT(f(z0), f(y)) → c4 80.29/23.12
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 80.29/23.12
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 80.29/23.12
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 80.29/23.12
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 80.29/23.12
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))
S tuples:none
K tuples:

MAT(f(z0), f(y)) → c4 80.29/23.12
F(no(z0)) → c7(F(z0)) 80.29/23.12
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 80.29/23.12
TP(mark(f(y))) → c5(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y)))) 80.29/23.12
TP(mark(f(y))) → c5(MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))) 80.29/23.12
CHK(no(c)) → c3 80.29/23.12
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 80.29/23.12
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c))) 80.29/23.12
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0)) 80.29/23.12
ACTIVE(f(z0)) → c1(F(z0)) 80.29/23.12
F(mark(z0)) → c8(F(z0))
Defined Rule Symbols:

active, chk, mat, f, tp

Defined Pair Symbols:

F, ACTIVE, CHK, MAT, TP

Compound Symbols:

c6, c7, c8, c1, c3, c4, c2, c9, c5

80.29/23.12
80.29/23.12

(37) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty
80.29/23.12
80.29/23.12

(38) BOUNDS(O(1), O(1))

80.29/23.12
80.29/23.12
80.60/23.22 EOF