YES(?,O(n^1)) 5.97/1.79 YES(?,O(n^1)) 5.97/1.79 5.97/1.79 We are left with following problem, upon which TcT provides the 5.97/1.79 certificate YES(?,O(n^1)). 5.97/1.79 5.97/1.79 Strict Trs: 5.97/1.79 { f(X) -> n__f(X) 5.97/1.79 , f(0()) -> cons(0(), n__f(s(0()))) 5.97/1.79 , f(s(0())) -> f(p(s(0()))) 5.97/1.79 , p(s(X)) -> X 5.97/1.79 , activate(X) -> X 5.97/1.79 , activate(n__f(X)) -> f(X) } 5.97/1.79 Obligation: 5.97/1.79 runtime complexity 5.97/1.79 Answer: 5.97/1.79 YES(?,O(n^1)) 5.97/1.79 5.97/1.79 The input is overlay and right-linear. Switching to innermost 5.97/1.79 rewriting. 5.97/1.79 5.97/1.79 We are left with following problem, upon which TcT provides the 5.97/1.79 certificate YES(?,O(n^1)). 5.97/1.79 5.97/1.79 Strict Trs: 5.97/1.79 { f(X) -> n__f(X) 5.97/1.79 , f(0()) -> cons(0(), n__f(s(0()))) 5.97/1.79 , f(s(0())) -> f(p(s(0()))) 5.97/1.79 , p(s(X)) -> X 5.97/1.79 , activate(X) -> X 5.97/1.79 , activate(n__f(X)) -> f(X) } 5.97/1.79 Obligation: 5.97/1.79 innermost runtime complexity 5.97/1.79 Answer: 5.97/1.79 YES(?,O(n^1)) 5.97/1.79 5.97/1.79 The problem is match-bounded by 2. The enriched problem is 5.97/1.79 compatible with the following automaton. 5.97/1.79 { f_0(2) -> 1 5.97/1.79 , f_1(2) -> 1 5.97/1.79 , f_1(7) -> 1 5.97/1.79 , 0_0() -> 1 5.97/1.79 , 0_0() -> 2 5.97/1.79 , 0_1() -> 3 5.97/1.79 , 0_1() -> 6 5.97/1.79 , 0_1() -> 7 5.97/1.79 , 0_2() -> 8 5.97/1.79 , 0_2() -> 11 5.97/1.79 , cons_0(2, 2) -> 1 5.97/1.79 , cons_0(2, 2) -> 2 5.97/1.79 , cons_1(3, 4) -> 1 5.97/1.79 , cons_2(8, 9) -> 1 5.97/1.79 , n__f_0(2) -> 1 5.97/1.79 , n__f_0(2) -> 2 5.97/1.79 , n__f_1(2) -> 1 5.97/1.79 , n__f_1(5) -> 4 5.97/1.79 , n__f_2(2) -> 1 5.97/1.79 , n__f_2(7) -> 1 5.97/1.79 , n__f_2(10) -> 9 5.97/1.79 , s_0(2) -> 1 5.97/1.79 , s_0(2) -> 2 5.97/1.79 , s_1(6) -> 5 5.97/1.79 , s_2(11) -> 10 5.97/1.79 , p_0(2) -> 1 5.97/1.79 , p_1(5) -> 7 5.97/1.79 , activate_0(2) -> 1 } 5.97/1.79 5.97/1.79 Hurray, we answered YES(?,O(n^1)) 6.20/1.80 EOF