YES(?,O(n^1)) 0.00/0.29 YES(?,O(n^1)) 0.00/0.29 0.00/0.29 We are left with following problem, upon which TcT provides the 0.00/0.29 certificate YES(?,O(n^1)). 0.00/0.29 0.00/0.29 Strict Trs: 0.00/0.29 { a__f(X) -> g(h(f(X))) 0.00/0.29 , a__f(X) -> f(X) 0.00/0.29 , mark(g(X)) -> g(X) 0.00/0.29 , mark(h(X)) -> h(mark(X)) 0.00/0.29 , mark(f(X)) -> a__f(mark(X)) } 0.00/0.29 Obligation: 0.00/0.29 runtime complexity 0.00/0.29 Answer: 0.00/0.29 YES(?,O(n^1)) 0.00/0.29 0.00/0.29 The input is overlay and right-linear. Switching to innermost 0.00/0.29 rewriting. 0.00/0.29 0.00/0.29 We are left with following problem, upon which TcT provides the 0.00/0.29 certificate YES(?,O(n^1)). 0.00/0.29 0.00/0.29 Strict Trs: 0.00/0.29 { a__f(X) -> g(h(f(X))) 0.00/0.29 , a__f(X) -> f(X) 0.00/0.29 , mark(g(X)) -> g(X) 0.00/0.29 , mark(h(X)) -> h(mark(X)) 0.00/0.29 , mark(f(X)) -> a__f(mark(X)) } 0.00/0.29 Obligation: 0.00/0.29 innermost runtime complexity 0.00/0.29 Answer: 0.00/0.29 YES(?,O(n^1)) 0.00/0.29 0.00/0.29 The input was oriented with the instance of 'Small Polynomial Path 0.00/0.29 Order (PS,1-bounded)' as induced by the safe mapping 0.00/0.29 0.00/0.29 safe(a__f) = {1}, safe(g) = {1}, safe(h) = {1}, safe(f) = {1}, 0.00/0.29 safe(mark) = {} 0.00/0.29 0.00/0.29 and precedence 0.00/0.29 0.00/0.29 mark > a__f . 0.00/0.29 0.00/0.29 Following symbols are considered recursive: 0.00/0.29 0.00/0.29 {mark} 0.00/0.29 0.00/0.29 The recursion depth is 1. 0.00/0.29 0.00/0.29 For your convenience, here are the satisfied ordering constraints: 0.00/0.29 0.00/0.29 a__f(; X) > g(; h(; f(; X))) 0.00/0.29 0.00/0.29 a__f(; X) > f(; X) 0.00/0.29 0.00/0.29 mark(g(; X);) > g(; X) 0.00/0.29 0.00/0.29 mark(h(; X);) > h(; mark(X;)) 0.00/0.29 0.00/0.29 mark(f(; X);) > a__f(; mark(X;)) 0.00/0.29 0.00/0.29 0.00/0.29 Hurray, we answered YES(?,O(n^1)) 0.00/0.29 EOF