YES(O(1),O(n^1)) 0.00/0.26 YES(O(1),O(n^1)) 0.00/0.26 0.00/0.26 We are left with following problem, upon which TcT provides the 0.00/0.26 certificate YES(O(1),O(n^1)). 0.00/0.26 0.00/0.26 Strict Trs: 0.00/0.26 { sum(0()) -> 0() 0.00/0.26 , sum(s(x)) -> +(sqr(s(x)), sum(x)) 0.00/0.26 , sum(s(x)) -> +(*(s(x), s(x)), sum(x)) 0.00/0.26 , sqr(x) -> *(x, x) } 0.00/0.26 Obligation: 0.00/0.26 runtime complexity 0.00/0.26 Answer: 0.00/0.26 YES(O(1),O(n^1)) 0.00/0.26 0.00/0.26 We add the following weak dependency pairs: 0.00/0.26 0.00/0.26 Strict DPs: 0.00/0.26 { sum^#(0()) -> c_1() 0.00/0.26 , sum^#(s(x)) -> c_2(sqr^#(s(x)), sum^#(x)) 0.00/0.26 , sum^#(s(x)) -> c_3(x, x, sum^#(x)) 0.00/0.26 , sqr^#(x) -> c_4(x, x) } 0.00/0.26 0.00/0.26 and mark the set of starting terms. 0.00/0.26 0.00/0.26 We are left with following problem, upon which TcT provides the 0.00/0.26 certificate YES(O(1),O(n^1)). 0.00/0.26 0.00/0.26 Strict DPs: 0.00/0.26 { sum^#(0()) -> c_1() 0.00/0.26 , sum^#(s(x)) -> c_2(sqr^#(s(x)), sum^#(x)) 0.00/0.26 , sum^#(s(x)) -> c_3(x, x, sum^#(x)) 0.00/0.26 , sqr^#(x) -> c_4(x, x) } 0.00/0.26 Strict Trs: 0.00/0.26 { sum(0()) -> 0() 0.00/0.26 , sum(s(x)) -> +(sqr(s(x)), sum(x)) 0.00/0.26 , sum(s(x)) -> +(*(s(x), s(x)), sum(x)) 0.00/0.26 , sqr(x) -> *(x, x) } 0.00/0.26 Obligation: 0.00/0.26 runtime complexity 0.00/0.26 Answer: 0.00/0.26 YES(O(1),O(n^1)) 0.00/0.26 0.00/0.26 No rule is usable, rules are removed from the input problem. 0.00/0.26 0.00/0.26 We are left with following problem, upon which TcT provides the 0.00/0.26 certificate YES(O(1),O(n^1)). 0.00/0.26 0.00/0.26 Strict DPs: 0.00/0.26 { sum^#(0()) -> c_1() 0.00/0.26 , sum^#(s(x)) -> c_2(sqr^#(s(x)), sum^#(x)) 0.00/0.26 , sum^#(s(x)) -> c_3(x, x, sum^#(x)) 0.00/0.26 , sqr^#(x) -> c_4(x, x) } 0.00/0.26 Obligation: 0.00/0.26 runtime complexity 0.00/0.26 Answer: 0.00/0.26 YES(O(1),O(n^1)) 0.00/0.26 0.00/0.26 The weightgap principle applies (using the following constant 0.00/0.26 growth matrix-interpretation) 0.00/0.26 0.00/0.26 The following argument positions are usable: 0.00/0.26 Uargs(c_2) = {1, 2}, Uargs(c_3) = {3} 0.00/0.26 0.00/0.26 TcT has computed the following constructor-restricted matrix 0.00/0.26 interpretation. 0.00/0.26 0.00/0.26 [0] = [0] 0.00/0.26 [0] 0.00/0.26 0.00/0.26 [s](x1) = [0] 0.00/0.26 [0] 0.00/0.26 0.00/0.26 [sum^#](x1) = [0] 0.00/0.26 [0] 0.00/0.26 0.00/0.26 [c_1] = [1] 0.00/0.26 [0] 0.00/0.26 0.00/0.26 [c_2](x1, x2) = [1 0] x1 + [1 0] x2 + [0] 0.00/0.26 [0 1] [0 1] [0] 0.00/0.26 0.00/0.26 [sqr^#](x1) = [1] 0.00/0.26 [1] 0.00/0.26 0.00/0.26 [c_3](x1, x2, x3) = [0 0] x1 + [0 0] x2 + [1 0] x3 + [2] 0.00/0.26 [1 2] [2 2] [0 1] [0] 0.00/0.26 0.00/0.26 [c_4](x1, x2) = [0] 0.00/0.26 [1] 0.00/0.26 0.00/0.26 The order satisfies the following ordering constraints: 0.00/0.26 0.00/0.26 [sum^#(0())] = [0] 0.00/0.26 [0] 0.00/0.26 ? [1] 0.00/0.26 [0] 0.00/0.26 = [c_1()] 0.00/0.26 0.00/0.26 [sum^#(s(x))] = [0] 0.00/0.26 [0] 0.00/0.26 ? [1] 0.00/0.26 [1] 0.00/0.26 = [c_2(sqr^#(s(x)), sum^#(x))] 0.00/0.26 0.00/0.26 [sum^#(s(x))] = [0] 0.00/0.26 [0] 0.00/0.26 ? [0 0] x + [2] 0.00/0.26 [3 4] [0] 0.00/0.26 = [c_3(x, x, sum^#(x))] 0.00/0.26 0.00/0.26 [sqr^#(x)] = [1] 0.00/0.26 [1] 0.00/0.26 > [0] 0.00/0.26 [1] 0.00/0.26 = [c_4(x, x)] 0.00/0.26 0.00/0.26 0.00/0.26 Further, it can be verified that all rules not oriented are covered by the weightgap condition. 0.00/0.26 0.00/0.26 We are left with following problem, upon which TcT provides the 0.00/0.26 certificate YES(O(1),O(n^1)). 0.00/0.26 0.00/0.26 Strict DPs: 0.00/0.26 { sum^#(0()) -> c_1() 0.00/0.26 , sum^#(s(x)) -> c_2(sqr^#(s(x)), sum^#(x)) 0.00/0.26 , sum^#(s(x)) -> c_3(x, x, sum^#(x)) } 0.00/0.26 Weak DPs: { sqr^#(x) -> c_4(x, x) } 0.00/0.26 Obligation: 0.00/0.26 runtime complexity 0.00/0.26 Answer: 0.00/0.26 YES(O(1),O(n^1)) 0.00/0.26 0.00/0.26 We use the processor 'matrix interpretation of dimension 1' to 0.00/0.26 orient following rules strictly. 0.00/0.26 0.00/0.26 DPs: 0.00/0.26 { 1: sum^#(0()) -> c_1() 0.00/0.26 , 2: sum^#(s(x)) -> c_2(sqr^#(s(x)), sum^#(x)) 0.00/0.26 , 3: sum^#(s(x)) -> c_3(x, x, sum^#(x)) } 0.00/0.26 0.00/0.26 Sub-proof: 0.00/0.26 ---------- 0.00/0.26 The following argument positions are usable: 0.00/0.26 Uargs(c_2) = {1, 2}, Uargs(c_3) = {3} 0.00/0.26 0.00/0.26 TcT has computed the following constructor-based matrix 0.00/0.26 interpretation satisfying not(EDA). 0.00/0.26 0.00/0.26 [0] = [3] 0.00/0.26 0.00/0.26 [s](x1) = [1] x1 + [3] 0.00/0.26 0.00/0.26 [sum^#](x1) = [3] x1 + [0] 0.00/0.26 0.00/0.26 [c_1] = [0] 0.00/0.26 0.00/0.26 [c_2](x1, x2) = [4] x1 + [1] x2 + [7] 0.00/0.26 0.00/0.26 [sqr^#](x1) = [0] 0.00/0.26 0.00/0.26 [c_3](x1, x2, x3) = [1] x3 + [7] 0.00/0.26 0.00/0.26 [c_4](x1, x2) = [0] 0.00/0.26 0.00/0.26 The order satisfies the following ordering constraints: 0.00/0.26 0.00/0.26 [sum^#(0())] = [9] 0.00/0.26 > [0] 0.00/0.26 = [c_1()] 0.00/0.26 0.00/0.26 [sum^#(s(x))] = [3] x + [9] 0.00/0.26 > [3] x + [7] 0.00/0.26 = [c_2(sqr^#(s(x)), sum^#(x))] 0.00/0.26 0.00/0.26 [sum^#(s(x))] = [3] x + [9] 0.00/0.26 > [3] x + [7] 0.00/0.26 = [c_3(x, x, sum^#(x))] 0.00/0.26 0.00/0.26 [sqr^#(x)] = [0] 0.00/0.26 >= [0] 0.00/0.26 = [c_4(x, x)] 0.00/0.26 0.00/0.26 0.00/0.26 The strictly oriented rules are moved into the weak component. 0.00/0.26 0.00/0.26 We are left with following problem, upon which TcT provides the 0.00/0.26 certificate YES(O(1),O(1)). 0.00/0.26 0.00/0.26 Weak DPs: 0.00/0.26 { sum^#(0()) -> c_1() 0.00/0.26 , sum^#(s(x)) -> c_2(sqr^#(s(x)), sum^#(x)) 0.00/0.26 , sum^#(s(x)) -> c_3(x, x, sum^#(x)) 0.00/0.26 , sqr^#(x) -> c_4(x, x) } 0.00/0.26 Obligation: 0.00/0.26 runtime complexity 0.00/0.26 Answer: 0.00/0.26 YES(O(1),O(1)) 0.00/0.26 0.00/0.26 The following weak DPs constitute a sub-graph of the DG that is 0.00/0.26 closed under successors. The DPs are removed. 0.00/0.26 0.00/0.26 { sum^#(0()) -> c_1() 0.00/0.26 , sum^#(s(x)) -> c_2(sqr^#(s(x)), sum^#(x)) 0.00/0.26 , sum^#(s(x)) -> c_3(x, x, sum^#(x)) 0.00/0.26 , sqr^#(x) -> c_4(x, x) } 0.00/0.26 0.00/0.26 We are left with following problem, upon which TcT provides the 0.00/0.26 certificate YES(O(1),O(1)). 0.00/0.26 0.00/0.26 Rules: Empty 0.00/0.26 Obligation: 0.00/0.26 runtime complexity 0.00/0.26 Answer: 0.00/0.26 YES(O(1),O(1)) 0.00/0.26 0.00/0.26 Empty rules are trivially bounded 0.00/0.26 0.00/0.26 Hurray, we answered YES(O(1),O(n^1)) 0.00/0.26 EOF