YES(O(1),O(n^1)) 3.12/1.25 YES(O(1),O(n^1)) 3.12/1.25 3.12/1.25 We are left with following problem, upon which TcT provides the 3.12/1.25 certificate YES(O(1),O(n^1)). 3.12/1.25 3.12/1.25 Strict Trs: 3.12/1.25 { perfectp(0()) -> false() 3.12/1.25 , perfectp(s(x)) -> f(x, s(0()), s(x), s(x)) 3.12/1.25 , f(0(), y, 0(), u) -> true() 3.12/1.25 , f(0(), y, s(z), u) -> false() 3.12/1.25 , f(s(x), 0(), z, u) -> f(x, u, minus(z, s(x)), u) 3.12/1.25 , f(s(x), s(y), z, u) -> 3.12/1.25 if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) } 3.12/1.25 Obligation: 3.12/1.25 runtime complexity 3.12/1.25 Answer: 3.12/1.25 YES(O(1),O(n^1)) 3.12/1.25 3.12/1.25 We add the following weak dependency pairs: 3.12/1.25 3.12/1.25 Strict DPs: 3.12/1.25 { perfectp^#(0()) -> c_1() 3.12/1.25 , perfectp^#(s(x)) -> c_2(f^#(x, s(0()), s(x), s(x))) 3.12/1.25 , f^#(0(), y, 0(), u) -> c_3() 3.12/1.25 , f^#(0(), y, s(z), u) -> c_4() 3.12/1.25 , f^#(s(x), 0(), z, u) -> c_5(f^#(x, u, minus(z, s(x)), u)) 3.12/1.25 , f^#(s(x), s(y), z, u) -> 3.12/1.25 c_6(x, y, f^#(s(x), minus(y, x), z, u), f^#(x, u, z, u)) } 3.12/1.25 3.12/1.25 and mark the set of starting terms. 3.12/1.25 3.12/1.25 We are left with following problem, upon which TcT provides the 3.12/1.25 certificate YES(O(1),O(n^1)). 3.12/1.25 3.12/1.25 Strict DPs: 3.12/1.25 { perfectp^#(0()) -> c_1() 3.12/1.25 , perfectp^#(s(x)) -> c_2(f^#(x, s(0()), s(x), s(x))) 3.12/1.25 , f^#(0(), y, 0(), u) -> c_3() 3.12/1.25 , f^#(0(), y, s(z), u) -> c_4() 3.12/1.25 , f^#(s(x), 0(), z, u) -> c_5(f^#(x, u, minus(z, s(x)), u)) 3.12/1.25 , f^#(s(x), s(y), z, u) -> 3.12/1.25 c_6(x, y, f^#(s(x), minus(y, x), z, u), f^#(x, u, z, u)) } 3.12/1.25 Strict Trs: 3.12/1.25 { perfectp(0()) -> false() 3.12/1.25 , perfectp(s(x)) -> f(x, s(0()), s(x), s(x)) 3.12/1.25 , f(0(), y, 0(), u) -> true() 3.12/1.25 , f(0(), y, s(z), u) -> false() 3.12/1.25 , f(s(x), 0(), z, u) -> f(x, u, minus(z, s(x)), u) 3.12/1.25 , f(s(x), s(y), z, u) -> 3.12/1.25 if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) } 3.12/1.25 Obligation: 3.12/1.25 runtime complexity 3.12/1.25 Answer: 3.12/1.25 YES(O(1),O(n^1)) 3.12/1.25 3.12/1.25 No rule is usable, rules are removed from the input problem. 3.12/1.25 3.12/1.25 We are left with following problem, upon which TcT provides the 3.12/1.25 certificate YES(O(1),O(n^1)). 3.12/1.25 3.12/1.25 Strict DPs: 3.12/1.25 { perfectp^#(0()) -> c_1() 3.12/1.25 , perfectp^#(s(x)) -> c_2(f^#(x, s(0()), s(x), s(x))) 3.12/1.25 , f^#(0(), y, 0(), u) -> c_3() 3.12/1.25 , f^#(0(), y, s(z), u) -> c_4() 3.12/1.25 , f^#(s(x), 0(), z, u) -> c_5(f^#(x, u, minus(z, s(x)), u)) 3.12/1.25 , f^#(s(x), s(y), z, u) -> 3.12/1.25 c_6(x, y, f^#(s(x), minus(y, x), z, u), f^#(x, u, z, u)) } 3.12/1.25 Obligation: 3.12/1.25 runtime complexity 3.12/1.25 Answer: 3.12/1.25 YES(O(1),O(n^1)) 3.12/1.25 3.12/1.25 The weightgap principle applies (using the following constant 3.12/1.25 growth matrix-interpretation) 3.12/1.25 3.12/1.25 The following argument positions are usable: 3.12/1.25 Uargs(c_2) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {4} 3.12/1.25 3.12/1.25 TcT has computed the following constructor-restricted matrix 3.12/1.25 interpretation. 3.12/1.25 3.12/1.25 [0] = [0] 3.12/1.25 [0] 3.12/1.25 3.12/1.25 [s](x1) = [0] 3.12/1.25 [0] 3.12/1.25 3.12/1.25 [minus](x1, x2) = [1 0] x1 + [0] 3.12/1.25 [0 0] [0] 3.12/1.25 3.12/1.25 [perfectp^#](x1) = [0] 3.12/1.25 [0] 3.12/1.25 3.12/1.25 [c_1] = [1] 3.12/1.25 [0] 3.12/1.25 3.12/1.25 [c_2](x1) = [1 0] x1 + [0] 3.12/1.25 [0 1] [0] 3.12/1.25 3.12/1.25 [f^#](x1, x2, x3, x4) = [1] 3.12/1.25 [0] 3.12/1.25 3.12/1.25 [c_3] = [0] 3.12/1.25 [0] 3.12/1.25 3.12/1.25 [c_4] = [0] 3.12/1.25 [0] 3.12/1.25 3.12/1.25 [c_5](x1) = [1 0] x1 + [0] 3.12/1.25 [0 1] [0] 3.12/1.25 3.12/1.25 [c_6](x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 0] x4 + [0] 3.12/1.25 [1 2] [2 0] [0 1] [0] 3.12/1.25 3.12/1.25 The order satisfies the following ordering constraints: 3.12/1.25 3.12/1.25 [perfectp^#(0())] = [0] 3.12/1.25 [0] 3.12/1.25 ? [1] 3.12/1.25 [0] 3.12/1.25 = [c_1()] 3.12/1.25 3.12/1.25 [perfectp^#(s(x))] = [0] 3.12/1.25 [0] 3.12/1.25 ? [1] 3.12/1.25 [0] 3.12/1.25 = [c_2(f^#(x, s(0()), s(x), s(x)))] 3.12/1.25 3.12/1.25 [f^#(0(), y, 0(), u)] = [1] 3.12/1.25 [0] 3.12/1.25 > [0] 3.12/1.25 [0] 3.12/1.25 = [c_3()] 3.12/1.25 3.12/1.25 [f^#(0(), y, s(z), u)] = [1] 3.12/1.25 [0] 3.12/1.25 > [0] 3.12/1.25 [0] 3.12/1.25 = [c_4()] 3.12/1.25 3.12/1.25 [f^#(s(x), 0(), z, u)] = [1] 3.12/1.25 [0] 3.12/1.25 >= [1] 3.12/1.25 [0] 3.12/1.25 = [c_5(f^#(x, u, minus(z, s(x)), u))] 3.12/1.25 3.12/1.25 [f^#(s(x), s(y), z, u)] = [1] 3.12/1.25 [0] 3.12/1.25 ? [0 0] x + [0 0] y + [1] 3.12/1.25 [1 2] [2 0] [0] 3.12/1.25 = [c_6(x, y, f^#(s(x), minus(y, x), z, u), f^#(x, u, z, u))] 3.12/1.25 3.12/1.25 3.12/1.25 Further, it can be verified that all rules not oriented are covered by the weightgap condition. 3.12/1.25 3.12/1.25 We are left with following problem, upon which TcT provides the 3.12/1.25 certificate YES(O(1),O(n^1)). 3.12/1.25 3.12/1.25 Strict DPs: 3.12/1.25 { perfectp^#(0()) -> c_1() 3.12/1.25 , perfectp^#(s(x)) -> c_2(f^#(x, s(0()), s(x), s(x))) 3.12/1.25 , f^#(s(x), 0(), z, u) -> c_5(f^#(x, u, minus(z, s(x)), u)) 3.12/1.25 , f^#(s(x), s(y), z, u) -> 3.12/1.25 c_6(x, y, f^#(s(x), minus(y, x), z, u), f^#(x, u, z, u)) } 3.12/1.25 Weak DPs: 3.12/1.25 { f^#(0(), y, 0(), u) -> c_3() 3.12/1.25 , f^#(0(), y, s(z), u) -> c_4() } 3.12/1.25 Obligation: 3.12/1.25 runtime complexity 3.12/1.25 Answer: 3.12/1.25 YES(O(1),O(n^1)) 3.12/1.25 3.12/1.25 We estimate the number of application of {1} by applications of 3.12/1.25 Pre({1}) = {4}. Here rules are labeled as follows: 3.12/1.25 3.12/1.25 DPs: 3.12/1.25 { 1: perfectp^#(0()) -> c_1() 3.12/1.25 , 2: perfectp^#(s(x)) -> c_2(f^#(x, s(0()), s(x), s(x))) 3.12/1.25 , 3: f^#(s(x), 0(), z, u) -> c_5(f^#(x, u, minus(z, s(x)), u)) 3.12/1.25 , 4: f^#(s(x), s(y), z, u) -> 3.12/1.25 c_6(x, y, f^#(s(x), minus(y, x), z, u), f^#(x, u, z, u)) 3.12/1.25 , 5: f^#(0(), y, 0(), u) -> c_3() 3.12/1.25 , 6: f^#(0(), y, s(z), u) -> c_4() } 3.12/1.25 3.12/1.25 We are left with following problem, upon which TcT provides the 3.12/1.25 certificate YES(O(1),O(n^1)). 3.12/1.25 3.12/1.25 Strict DPs: 3.12/1.25 { perfectp^#(s(x)) -> c_2(f^#(x, s(0()), s(x), s(x))) 3.12/1.25 , f^#(s(x), 0(), z, u) -> c_5(f^#(x, u, minus(z, s(x)), u)) 3.12/1.25 , f^#(s(x), s(y), z, u) -> 3.12/1.25 c_6(x, y, f^#(s(x), minus(y, x), z, u), f^#(x, u, z, u)) } 3.12/1.25 Weak DPs: 3.12/1.25 { perfectp^#(0()) -> c_1() 3.12/1.25 , f^#(0(), y, 0(), u) -> c_3() 3.12/1.29 , f^#(0(), y, s(z), u) -> c_4() } 3.12/1.29 Obligation: 3.12/1.29 runtime complexity 3.12/1.29 Answer: 3.12/1.29 YES(O(1),O(n^1)) 3.12/1.29 3.12/1.29 The following weak DPs constitute a sub-graph of the DG that is 3.12/1.29 closed under successors. The DPs are removed. 3.12/1.29 3.12/1.29 { perfectp^#(0()) -> c_1() 3.12/1.29 , f^#(0(), y, 0(), u) -> c_3() 3.12/1.29 , f^#(0(), y, s(z), u) -> c_4() } 3.12/1.29 3.12/1.29 We are left with following problem, upon which TcT provides the 3.12/1.29 certificate YES(O(1),O(n^1)). 3.12/1.29 3.12/1.29 Strict DPs: 3.12/1.29 { perfectp^#(s(x)) -> c_2(f^#(x, s(0()), s(x), s(x))) 3.12/1.29 , f^#(s(x), 0(), z, u) -> c_5(f^#(x, u, minus(z, s(x)), u)) 3.12/1.29 , f^#(s(x), s(y), z, u) -> 3.12/1.29 c_6(x, y, f^#(s(x), minus(y, x), z, u), f^#(x, u, z, u)) } 3.12/1.29 Obligation: 3.12/1.29 runtime complexity 3.12/1.29 Answer: 3.12/1.29 YES(O(1),O(n^1)) 3.12/1.29 3.12/1.29 Due to missing edges in the dependency-graph, the right-hand sides 3.12/1.29 of following rules could be simplified: 3.12/1.29 3.12/1.29 { f^#(s(x), s(y), z, u) -> 3.12/1.29 c_6(x, y, f^#(s(x), minus(y, x), z, u), f^#(x, u, z, u)) } 3.12/1.29 3.12/1.29 We are left with following problem, upon which TcT provides the 3.12/1.29 certificate YES(O(1),O(n^1)). 3.12/1.29 3.12/1.29 Strict DPs: 3.12/1.29 { perfectp^#(s(x)) -> c_1(f^#(x, s(0()), s(x), s(x))) 3.12/1.29 , f^#(s(x), 0(), z, u) -> c_2(f^#(x, u, minus(z, s(x)), u)) 3.12/1.29 , f^#(s(x), s(y), z, u) -> c_3(x, y, f^#(x, u, z, u)) } 3.12/1.29 Obligation: 3.12/1.29 runtime complexity 3.12/1.29 Answer: 3.12/1.29 YES(O(1),O(n^1)) 3.12/1.29 3.12/1.29 We use the processor 'matrix interpretation of dimension 1' to 3.12/1.29 orient following rules strictly. 3.12/1.29 3.12/1.29 DPs: 3.12/1.29 { 1: perfectp^#(s(x)) -> c_1(f^#(x, s(0()), s(x), s(x))) } 3.12/1.29 3.12/1.29 Sub-proof: 3.12/1.29 ---------- 3.12/1.29 The following argument positions are usable: 3.12/1.29 Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {3} 3.12/1.29 3.12/1.29 TcT has computed the following constructor-based matrix 3.12/1.29 interpretation satisfying not(EDA). 3.12/1.29 3.12/1.29 [0] = [0] 3.12/1.29 3.12/1.29 [s](x1) = [1] x1 + [0] 3.12/1.29 3.12/1.29 [minus](x1, x2) = [1] x1 + [4] 3.12/1.29 3.12/1.29 [perfectp^#](x1) = [4] x1 + [7] 3.12/1.29 3.12/1.29 [f^#](x1, x2, x3, x4) = [0] 3.12/1.29 3.12/1.29 [c_1](x1) = [4] x1 + [1] 3.12/1.29 3.12/1.29 [c_2](x1) = [4] x1 + [0] 3.12/1.29 3.12/1.29 [c_3](x1, x2, x3) = [2] x3 + [0] 3.12/1.29 3.12/1.29 The order satisfies the following ordering constraints: 3.12/1.29 3.12/1.29 [perfectp^#(s(x))] = [4] x + [7] 3.12/1.29 > [1] 3.12/1.29 = [c_1(f^#(x, s(0()), s(x), s(x)))] 3.12/1.29 3.12/1.29 [f^#(s(x), 0(), z, u)] = [0] 3.12/1.29 >= [0] 3.12/1.29 = [c_2(f^#(x, u, minus(z, s(x)), u))] 3.12/1.29 3.12/1.29 [f^#(s(x), s(y), z, u)] = [0] 3.12/1.29 >= [0] 3.12/1.29 = [c_3(x, y, f^#(x, u, z, u))] 3.12/1.29 3.12/1.29 3.12/1.29 The strictly oriented rules are moved into the weak component. 3.12/1.29 3.12/1.29 We are left with following problem, upon which TcT provides the 3.12/1.29 certificate YES(O(1),O(n^1)). 3.12/1.29 3.12/1.29 Strict DPs: 3.12/1.29 { f^#(s(x), 0(), z, u) -> c_2(f^#(x, u, minus(z, s(x)), u)) 3.12/1.29 , f^#(s(x), s(y), z, u) -> c_3(x, y, f^#(x, u, z, u)) } 3.12/1.29 Weak DPs: { perfectp^#(s(x)) -> c_1(f^#(x, s(0()), s(x), s(x))) } 3.12/1.29 Obligation: 3.12/1.29 runtime complexity 3.12/1.29 Answer: 3.12/1.29 YES(O(1),O(n^1)) 3.12/1.29 3.12/1.29 We use the processor 'matrix interpretation of dimension 1' to 3.12/1.29 orient following rules strictly. 3.12/1.29 3.12/1.29 DPs: 3.12/1.29 { 1: f^#(s(x), 0(), z, u) -> c_2(f^#(x, u, minus(z, s(x)), u)) 3.12/1.29 , 2: f^#(s(x), s(y), z, u) -> c_3(x, y, f^#(x, u, z, u)) } 3.12/1.29 3.12/1.29 Sub-proof: 3.12/1.29 ---------- 3.12/1.29 The following argument positions are usable: 3.12/1.29 Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {3} 3.12/1.29 3.12/1.29 TcT has computed the following constructor-based matrix 3.12/1.29 interpretation satisfying not(EDA). 3.12/1.29 3.12/1.29 [0] = [0] 3.12/1.29 3.12/1.29 [s](x1) = [1] x1 + [4] 3.12/1.29 3.12/1.29 [minus](x1, x2) = [1] x1 + [4] 3.12/1.29 3.12/1.29 [perfectp^#](x1) = [1] x1 + [3] 3.12/1.29 3.12/1.29 [f^#](x1, x2, x3, x4) = [1] x1 + [4] 3.12/1.29 3.12/1.29 [c_1](x1) = [1] x1 + [3] 3.12/1.29 3.12/1.29 [c_2](x1) = [1] x1 + [3] 3.12/1.29 3.12/1.29 [c_3](x1, x2, x3) = [1] x3 + [1] 3.12/1.29 3.12/1.29 The order satisfies the following ordering constraints: 3.12/1.29 3.12/1.29 [perfectp^#(s(x))] = [1] x + [7] 3.12/1.29 >= [1] x + [7] 3.12/1.29 = [c_1(f^#(x, s(0()), s(x), s(x)))] 3.12/1.29 3.12/1.29 [f^#(s(x), 0(), z, u)] = [1] x + [8] 3.12/1.29 > [1] x + [7] 3.12/1.29 = [c_2(f^#(x, u, minus(z, s(x)), u))] 3.12/1.29 3.12/1.29 [f^#(s(x), s(y), z, u)] = [1] x + [8] 3.12/1.29 > [1] x + [5] 3.12/1.29 = [c_3(x, y, f^#(x, u, z, u))] 3.12/1.29 3.12/1.29 3.12/1.29 We return to the main proof. Consider the set of all dependency 3.12/1.29 pairs 3.12/1.29 3.12/1.29 : 3.12/1.29 { 1: f^#(s(x), 0(), z, u) -> c_2(f^#(x, u, minus(z, s(x)), u)) 3.12/1.29 , 2: f^#(s(x), s(y), z, u) -> c_3(x, y, f^#(x, u, z, u)) 3.12/1.29 , 3: perfectp^#(s(x)) -> c_1(f^#(x, s(0()), s(x), s(x))) } 3.12/1.29 3.12/1.29 Processor 'matrix interpretation of dimension 1' induces the 3.12/1.29 complexity certificate YES(?,O(n^1)) on application of dependency 3.12/1.29 pairs {1,2}. These cover all (indirect) predecessors of dependency 3.12/1.29 pairs {1,2,3}, their number of application is equally bounded. The 3.12/1.29 dependency pairs are shifted into the weak component. 3.12/1.29 3.12/1.29 We are left with following problem, upon which TcT provides the 3.12/1.29 certificate YES(O(1),O(1)). 3.12/1.29 3.12/1.29 Weak DPs: 3.12/1.29 { perfectp^#(s(x)) -> c_1(f^#(x, s(0()), s(x), s(x))) 3.12/1.29 , f^#(s(x), 0(), z, u) -> c_2(f^#(x, u, minus(z, s(x)), u)) 3.12/1.29 , f^#(s(x), s(y), z, u) -> c_3(x, y, f^#(x, u, z, u)) } 3.12/1.29 Obligation: 3.12/1.29 runtime complexity 3.12/1.29 Answer: 3.12/1.29 YES(O(1),O(1)) 3.12/1.29 3.12/1.29 The following weak DPs constitute a sub-graph of the DG that is 3.12/1.29 closed under successors. The DPs are removed. 3.12/1.29 3.12/1.29 { perfectp^#(s(x)) -> c_1(f^#(x, s(0()), s(x), s(x))) 3.12/1.29 , f^#(s(x), 0(), z, u) -> c_2(f^#(x, u, minus(z, s(x)), u)) 3.12/1.29 , f^#(s(x), s(y), z, u) -> c_3(x, y, f^#(x, u, z, u)) } 3.12/1.29 3.12/1.29 We are left with following problem, upon which TcT provides the 3.12/1.29 certificate YES(O(1),O(1)). 3.12/1.29 3.12/1.29 Rules: Empty 3.12/1.29 Obligation: 3.12/1.29 runtime complexity 3.12/1.29 Answer: 3.12/1.29 YES(O(1),O(1)) 3.12/1.29 3.12/1.29 Empty rules are trivially bounded 3.12/1.29 3.12/1.29 Hurray, we answered YES(O(1),O(n^1)) 3.12/1.29 EOF