YES(O(1),O(n^1)) 0.00/0.57 YES(O(1),O(n^1)) 0.00/0.57 0.00/0.57 We are left with following problem, upon which TcT provides the 0.00/0.57 certificate YES(O(1),O(n^1)). 0.00/0.57 0.00/0.57 Strict Trs: 0.00/0.57 { g(x, y) -> x 0.00/0.57 , g(x, y) -> y 0.00/0.57 , f(x, y, s(z)) -> s(f(0(), 1(), z)) 0.00/0.57 , f(0(), 1(), x) -> f(s(x), x, x) } 0.00/0.57 Obligation: 0.00/0.57 runtime complexity 0.00/0.57 Answer: 0.00/0.57 YES(O(1),O(n^1)) 0.00/0.57 0.00/0.57 We add the following weak dependency pairs: 0.00/0.57 0.00/0.57 Strict DPs: 0.00/0.57 { g^#(x, y) -> c_1(x) 0.00/0.57 , g^#(x, y) -> c_2(y) 0.00/0.57 , f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.57 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.57 0.00/0.57 and mark the set of starting terms. 0.00/0.57 0.00/0.57 We are left with following problem, upon which TcT provides the 0.00/0.57 certificate YES(O(1),O(n^1)). 0.00/0.57 0.00/0.57 Strict DPs: 0.00/0.57 { g^#(x, y) -> c_1(x) 0.00/0.57 , g^#(x, y) -> c_2(y) 0.00/0.57 , f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.57 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.57 Strict Trs: 0.00/0.57 { g(x, y) -> x 0.00/0.57 , g(x, y) -> y 0.00/0.57 , f(x, y, s(z)) -> s(f(0(), 1(), z)) 0.00/0.57 , f(0(), 1(), x) -> f(s(x), x, x) } 0.00/0.57 Obligation: 0.00/0.57 runtime complexity 0.00/0.57 Answer: 0.00/0.57 YES(O(1),O(n^1)) 0.00/0.57 0.00/0.57 No rule is usable, rules are removed from the input problem. 0.00/0.57 0.00/0.57 We are left with following problem, upon which TcT provides the 0.00/0.57 certificate YES(O(1),O(n^1)). 0.00/0.57 0.00/0.57 Strict DPs: 0.00/0.57 { g^#(x, y) -> c_1(x) 0.00/0.57 , g^#(x, y) -> c_2(y) 0.00/0.57 , f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.57 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.57 Obligation: 0.00/0.57 runtime complexity 0.00/0.57 Answer: 0.00/0.57 YES(O(1),O(n^1)) 0.00/0.57 0.00/0.57 The weightgap principle applies (using the following constant 0.00/0.57 growth matrix-interpretation) 0.00/0.57 0.00/0.57 The following argument positions are usable: 0.00/0.57 Uargs(c_3) = {1}, Uargs(c_4) = {1} 0.00/0.57 0.00/0.57 TcT has computed the following constructor-restricted matrix 0.00/0.57 interpretation. 0.00/0.57 0.00/0.57 [0] = [0] 0.00/0.57 [0] 0.00/0.57 0.00/0.57 [1] = [0] 0.00/0.57 [0] 0.00/0.57 0.00/0.57 [s](x1) = [1 0] x1 + [0] 0.00/0.57 [0 0] [0] 0.00/0.57 0.00/0.57 [g^#](x1, x2) = [1 1] x1 + [1 1] x2 + [1] 0.00/0.57 [2 1] [2 1] [1] 0.00/0.57 0.00/0.57 [c_1](x1) = [1 1] x1 + [0] 0.00/0.57 [1 1] [1] 0.00/0.57 0.00/0.57 [c_2](x1) = [1 1] x1 + [0] 0.00/0.57 [1 1] [1] 0.00/0.57 0.00/0.57 [f^#](x1, x2, x3) = [0 0] x3 + [0] 0.00/0.57 [2 0] [0] 0.00/0.57 0.00/0.57 [c_3](x1) = [1 0] x1 + [2] 0.00/0.57 [0 1] [2] 0.00/0.57 0.00/0.57 [c_4](x1) = [1 0] x1 + [2] 0.00/0.57 [0 1] [2] 0.00/0.57 0.00/0.57 The order satisfies the following ordering constraints: 0.00/0.57 0.00/0.57 [g^#(x, y)] = [1 1] x + [1 1] y + [1] 0.00/0.57 [2 1] [2 1] [1] 0.00/0.57 > [1 1] x + [0] 0.00/0.57 [1 1] [1] 0.00/0.57 = [c_1(x)] 0.00/0.57 0.00/0.57 [g^#(x, y)] = [1 1] x + [1 1] y + [1] 0.00/0.57 [2 1] [2 1] [1] 0.00/0.57 > [1 1] y + [0] 0.00/0.57 [1 1] [1] 0.00/0.57 = [c_2(y)] 0.00/0.57 0.00/0.57 [f^#(x, y, s(z))] = [0 0] z + [0] 0.00/0.57 [2 0] [0] 0.00/0.57 ? [0 0] z + [2] 0.00/0.57 [2 0] [2] 0.00/0.57 = [c_3(f^#(0(), 1(), z))] 0.00/0.57 0.00/0.57 [f^#(0(), 1(), x)] = [0 0] x + [0] 0.00/0.57 [2 0] [0] 0.00/0.57 ? [0 0] x + [2] 0.00/0.57 [2 0] [2] 0.00/0.57 = [c_4(f^#(s(x), x, x))] 0.00/0.57 0.00/0.57 0.00/0.57 Further, it can be verified that all rules not oriented are covered by the weightgap condition. 0.00/0.57 0.00/0.57 We are left with following problem, upon which TcT provides the 0.00/0.57 certificate YES(O(1),O(n^1)). 0.00/0.57 0.00/0.57 Strict DPs: 0.00/0.57 { f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.57 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.57 Weak DPs: 0.00/0.57 { g^#(x, y) -> c_1(x) 0.00/0.57 , g^#(x, y) -> c_2(y) } 0.00/0.57 Obligation: 0.00/0.57 runtime complexity 0.00/0.57 Answer: 0.00/0.57 YES(O(1),O(n^1)) 0.00/0.57 0.00/0.57 We use the processor 'matrix interpretation of dimension 1' to 0.00/0.57 orient following rules strictly. 0.00/0.57 0.00/0.57 DPs: 0.00/0.57 { 1: f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.57 , 3: g^#(x, y) -> c_1(x) 0.00/0.57 , 4: g^#(x, y) -> c_2(y) } 0.00/0.57 0.00/0.57 Sub-proof: 0.00/0.57 ---------- 0.00/0.57 The following argument positions are usable: 0.00/0.57 Uargs(c_3) = {1}, Uargs(c_4) = {1} 0.00/0.57 0.00/0.57 TcT has computed the following constructor-based matrix 0.00/0.57 interpretation satisfying not(EDA). 0.00/0.57 0.00/0.57 [0] = [0] 0.00/0.57 0.00/0.57 [1] = [0] 0.00/0.57 0.00/0.57 [s](x1) = [1] x1 + [2] 0.00/0.57 0.00/0.57 [g^#](x1, x2) = [7] x1 + [7] x2 + [7] 0.00/0.57 0.00/0.57 [c_1](x1) = [7] x1 + [3] 0.00/0.57 0.00/0.57 [c_2](x1) = [7] x1 + [3] 0.00/0.57 0.00/0.57 [f^#](x1, x2, x3) = [4] x3 + [0] 0.00/0.57 0.00/0.57 [c_3](x1) = [1] x1 + [1] 0.00/0.57 0.00/0.57 [c_4](x1) = [1] x1 + [0] 0.00/0.57 0.00/0.57 The order satisfies the following ordering constraints: 0.00/0.57 0.00/0.57 [g^#(x, y)] = [7] x + [7] y + [7] 0.00/0.57 > [7] x + [3] 0.00/0.57 = [c_1(x)] 0.00/0.57 0.00/0.57 [g^#(x, y)] = [7] x + [7] y + [7] 0.00/0.57 > [7] y + [3] 0.00/0.57 = [c_2(y)] 0.00/0.57 0.00/0.57 [f^#(x, y, s(z))] = [4] z + [8] 0.00/0.57 > [4] z + [1] 0.00/0.57 = [c_3(f^#(0(), 1(), z))] 0.00/0.57 0.00/0.57 [f^#(0(), 1(), x)] = [4] x + [0] 0.00/0.57 >= [4] x + [0] 0.00/0.57 = [c_4(f^#(s(x), x, x))] 0.00/0.57 0.00/0.57 0.00/0.57 We return to the main proof. Consider the set of all dependency 0.00/0.57 pairs 0.00/0.57 0.00/0.57 : 0.00/0.57 { 1: f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.57 , 2: f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) 0.00/0.57 , 3: g^#(x, y) -> c_1(x) 0.00/0.57 , 4: g^#(x, y) -> c_2(y) } 0.00/0.57 0.00/0.57 Processor 'matrix interpretation of dimension 1' induces the 0.00/0.57 complexity certificate YES(?,O(n^1)) on application of dependency 0.00/0.57 pairs {1,3,4}. These cover all (indirect) predecessors of 0.00/0.57 dependency pairs {1,2,3,4}, their number of application is equally 0.00/0.57 bounded. The dependency pairs are shifted into the weak component. 0.00/0.57 0.00/0.57 We are left with following problem, upon which TcT provides the 0.00/0.57 certificate YES(O(1),O(1)). 0.00/0.57 0.00/0.57 Weak DPs: 0.00/0.57 { g^#(x, y) -> c_1(x) 0.00/0.57 , g^#(x, y) -> c_2(y) 0.00/0.57 , f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.57 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.57 Obligation: 0.00/0.57 runtime complexity 0.00/0.57 Answer: 0.00/0.57 YES(O(1),O(1)) 0.00/0.57 0.00/0.57 The following weak DPs constitute a sub-graph of the DG that is 0.00/0.57 closed under successors. The DPs are removed. 0.00/0.57 0.00/0.57 { g^#(x, y) -> c_1(x) 0.00/0.57 , g^#(x, y) -> c_2(y) 0.00/0.57 , f^#(x, y, s(z)) -> c_3(f^#(0(), 1(), z)) 0.00/0.57 , f^#(0(), 1(), x) -> c_4(f^#(s(x), x, x)) } 0.00/0.57 0.00/0.57 We are left with following problem, upon which TcT provides the 0.00/0.57 certificate YES(O(1),O(1)). 0.00/0.57 0.00/0.57 Rules: Empty 0.00/0.57 Obligation: 0.00/0.57 runtime complexity 0.00/0.57 Answer: 0.00/0.57 YES(O(1),O(1)) 0.00/0.57 0.00/0.57 Empty rules are trivially bounded 0.00/0.57 0.00/0.57 Hurray, we answered YES(O(1),O(n^1)) 0.00/0.57 EOF