YES(O(1),O(1)) 0.00/0.76 YES(O(1),O(1)) 0.00/0.76 0.00/0.76 We are left with following problem, upon which TcT provides the 0.00/0.76 certificate YES(O(1),O(1)). 0.00/0.76 0.00/0.76 Strict Trs: 0.00/0.76 { p(f(f(x))) -> q(f(g(x))) 0.00/0.76 , p(g(g(x))) -> q(g(f(x))) 0.00/0.76 , q(f(f(x))) -> p(f(g(x))) 0.00/0.76 , q(g(g(x))) -> p(g(f(x))) } 0.00/0.76 Obligation: 0.00/0.76 runtime complexity 0.00/0.76 Answer: 0.00/0.76 YES(O(1),O(1)) 0.00/0.76 0.00/0.76 The input is overlay and right-linear. Switching to innermost 0.00/0.76 rewriting. 0.00/0.76 0.00/0.76 We are left with following problem, upon which TcT provides the 0.00/0.76 certificate YES(O(1),O(1)). 0.00/0.76 0.00/0.76 Strict Trs: 0.00/0.76 { p(f(f(x))) -> q(f(g(x))) 0.00/0.76 , p(g(g(x))) -> q(g(f(x))) 0.00/0.76 , q(f(f(x))) -> p(f(g(x))) 0.00/0.76 , q(g(g(x))) -> p(g(f(x))) } 0.00/0.76 Obligation: 0.00/0.76 innermost runtime complexity 0.00/0.76 Answer: 0.00/0.76 YES(O(1),O(1)) 0.00/0.76 0.00/0.76 We add the following weak dependency pairs: 0.00/0.76 0.00/0.76 Strict DPs: 0.00/0.76 { p^#(f(f(x))) -> c_1(q^#(f(g(x)))) 0.00/0.76 , p^#(g(g(x))) -> c_2(q^#(g(f(x)))) 0.00/0.76 , q^#(f(f(x))) -> c_3(p^#(f(g(x)))) 0.00/0.76 , q^#(g(g(x))) -> c_4(p^#(g(f(x)))) } 0.00/0.76 0.00/0.76 and mark the set of starting terms. 0.00/0.76 0.00/0.76 We are left with following problem, upon which TcT provides the 0.00/0.76 certificate YES(O(1),O(1)). 0.00/0.76 0.00/0.76 Strict DPs: 0.00/0.76 { p^#(f(f(x))) -> c_1(q^#(f(g(x)))) 0.00/0.76 , p^#(g(g(x))) -> c_2(q^#(g(f(x)))) 0.00/0.76 , q^#(f(f(x))) -> c_3(p^#(f(g(x)))) 0.00/0.76 , q^#(g(g(x))) -> c_4(p^#(g(f(x)))) } 0.00/0.76 Strict Trs: 0.00/0.76 { p(f(f(x))) -> q(f(g(x))) 0.00/0.76 , p(g(g(x))) -> q(g(f(x))) 0.00/0.76 , q(f(f(x))) -> p(f(g(x))) 0.00/0.76 , q(g(g(x))) -> p(g(f(x))) } 0.00/0.76 Obligation: 0.00/0.76 innermost runtime complexity 0.00/0.76 Answer: 0.00/0.76 YES(O(1),O(1)) 0.00/0.76 0.00/0.76 No rule is usable, rules are removed from the input problem. 0.00/0.76 0.00/0.76 We are left with following problem, upon which TcT provides the 0.00/0.76 certificate YES(O(1),O(1)). 0.00/0.76 0.00/0.76 Strict DPs: 0.00/0.76 { p^#(f(f(x))) -> c_1(q^#(f(g(x)))) 0.00/0.76 , p^#(g(g(x))) -> c_2(q^#(g(f(x)))) 0.00/0.76 , q^#(f(f(x))) -> c_3(p^#(f(g(x)))) 0.00/0.76 , q^#(g(g(x))) -> c_4(p^#(g(f(x)))) } 0.00/0.76 Obligation: 0.00/0.76 innermost runtime complexity 0.00/0.76 Answer: 0.00/0.76 YES(O(1),O(1)) 0.00/0.76 0.00/0.76 The weightgap principle applies (using the following constant 0.00/0.76 growth matrix-interpretation) 0.00/0.76 0.00/0.76 The following argument positions are usable: 0.00/0.76 none 0.00/0.76 0.00/0.76 TcT has computed the following constructor-restricted matrix 0.00/0.76 interpretation. 0.00/0.76 0.00/0.76 [f](x1) = [2] 0.00/0.76 [2] 0.00/0.76 0.00/0.76 [g](x1) = [0] 0.00/0.76 [0] 0.00/0.76 0.00/0.76 [p^#](x1) = [0 2] x1 + [0] 0.00/0.76 [2 0] [0] 0.00/0.76 0.00/0.76 [c_1](x1) = [1] 0.00/0.76 [1] 0.00/0.76 0.00/0.76 [q^#](x1) = [0] 0.00/0.76 [0] 0.00/0.76 0.00/0.76 [c_2](x1) = [1] 0.00/0.76 [1] 0.00/0.76 0.00/0.76 [c_3](x1) = [1] 0.00/0.76 [0] 0.00/0.76 0.00/0.76 [c_4](x1) = [1] 0.00/0.76 [0] 0.00/0.76 0.00/0.76 The order satisfies the following ordering constraints: 0.00/0.76 0.00/0.76 [p^#(f(f(x)))] = [4] 0.00/0.76 [4] 0.00/0.76 > [1] 0.00/0.76 [1] 0.00/0.76 = [c_1(q^#(f(g(x))))] 0.00/0.76 0.00/0.76 [p^#(g(g(x)))] = [0] 0.00/0.76 [0] 0.00/0.76 ? [1] 0.00/0.76 [1] 0.00/0.76 = [c_2(q^#(g(f(x))))] 0.00/0.76 0.00/0.76 [q^#(f(f(x)))] = [0] 0.00/0.76 [0] 0.00/0.76 ? [1] 0.00/0.76 [0] 0.00/0.76 = [c_3(p^#(f(g(x))))] 0.00/0.76 0.00/0.76 [q^#(g(g(x)))] = [0] 0.00/0.76 [0] 0.00/0.76 ? [1] 0.00/0.76 [0] 0.00/0.76 = [c_4(p^#(g(f(x))))] 0.00/0.76 0.00/0.76 0.00/0.76 Further, it can be verified that all rules not oriented are covered by the weightgap condition. 0.00/0.76 0.00/0.76 We are left with following problem, upon which TcT provides the 0.00/0.76 certificate YES(O(1),O(1)). 0.00/0.76 0.00/0.76 Strict DPs: 0.00/0.76 { p^#(g(g(x))) -> c_2(q^#(g(f(x)))) 0.00/0.76 , q^#(f(f(x))) -> c_3(p^#(f(g(x)))) 0.00/0.76 , q^#(g(g(x))) -> c_4(p^#(g(f(x)))) } 0.00/0.76 Weak DPs: { p^#(f(f(x))) -> c_1(q^#(f(g(x)))) } 0.00/0.76 Obligation: 0.00/0.76 innermost runtime complexity 0.00/0.76 Answer: 0.00/0.76 YES(O(1),O(1)) 0.00/0.76 0.00/0.76 We estimate the number of application of {1,2,3} by applications of 0.00/0.76 Pre({1,2,3}) = {}. Here rules are labeled as follows: 0.00/0.76 0.00/0.76 DPs: 0.00/0.76 { 1: p^#(g(g(x))) -> c_2(q^#(g(f(x)))) 0.00/0.76 , 2: q^#(f(f(x))) -> c_3(p^#(f(g(x)))) 0.00/0.76 , 3: q^#(g(g(x))) -> c_4(p^#(g(f(x)))) 0.00/0.76 , 4: p^#(f(f(x))) -> c_1(q^#(f(g(x)))) } 0.00/0.76 0.00/0.76 We are left with following problem, upon which TcT provides the 0.00/0.76 certificate YES(O(1),O(1)). 0.00/0.76 0.00/0.76 Weak DPs: 0.00/0.76 { p^#(f(f(x))) -> c_1(q^#(f(g(x)))) 0.00/0.76 , p^#(g(g(x))) -> c_2(q^#(g(f(x)))) 0.00/0.76 , q^#(f(f(x))) -> c_3(p^#(f(g(x)))) 0.00/0.76 , q^#(g(g(x))) -> c_4(p^#(g(f(x)))) } 0.00/0.76 Obligation: 0.00/0.76 innermost runtime complexity 0.00/0.76 Answer: 0.00/0.76 YES(O(1),O(1)) 0.00/0.76 0.00/0.76 The following weak DPs constitute a sub-graph of the DG that is 0.00/0.76 closed under successors. The DPs are removed. 0.00/0.76 0.00/0.76 { p^#(f(f(x))) -> c_1(q^#(f(g(x)))) 0.00/0.76 , p^#(g(g(x))) -> c_2(q^#(g(f(x)))) 0.00/0.76 , q^#(f(f(x))) -> c_3(p^#(f(g(x)))) 0.00/0.76 , q^#(g(g(x))) -> c_4(p^#(g(f(x)))) } 0.00/0.76 0.00/0.76 We are left with following problem, upon which TcT provides the 0.00/0.76 certificate YES(O(1),O(1)). 0.00/0.76 0.00/0.76 Rules: Empty 0.00/0.76 Obligation: 0.00/0.76 innermost runtime complexity 0.00/0.76 Answer: 0.00/0.76 YES(O(1),O(1)) 0.00/0.76 0.00/0.76 Empty rules are trivially bounded 0.00/0.76 0.00/0.76 Hurray, we answered YES(O(1),O(1)) 0.00/0.77 EOF