YES(O(1),O(n^1)) 0.00/0.59 YES(O(1),O(n^1)) 0.00/0.59 0.00/0.59 We are left with following problem, upon which TcT provides the 0.00/0.59 certificate YES(O(1),O(n^1)). 0.00/0.59 0.00/0.59 Strict Trs: 0.00/0.59 { minus(x, 0()) -> x 0.00/0.59 , minus(s(x), s(y)) -> minus(x, y) 0.00/0.59 , quot(0(), s(y)) -> 0() 0.00/0.59 , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) } 0.00/0.59 Obligation: 0.00/0.59 runtime complexity 0.00/0.59 Answer: 0.00/0.59 YES(O(1),O(n^1)) 0.00/0.59 0.00/0.59 We add the following weak dependency pairs: 0.00/0.59 0.00/0.59 Strict DPs: 0.00/0.59 { minus^#(x, 0()) -> c_1(x) 0.00/0.59 , minus^#(s(x), s(y)) -> c_2(minus^#(x, y)) 0.00/0.59 , quot^#(0(), s(y)) -> c_3() 0.00/0.59 , quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y))) } 0.00/0.59 0.00/0.59 and mark the set of starting terms. 0.00/0.59 0.00/0.59 We are left with following problem, upon which TcT provides the 0.00/0.59 certificate YES(O(1),O(n^1)). 0.00/0.59 0.00/0.59 Strict DPs: 0.00/0.59 { minus^#(x, 0()) -> c_1(x) 0.00/0.59 , minus^#(s(x), s(y)) -> c_2(minus^#(x, y)) 0.00/0.59 , quot^#(0(), s(y)) -> c_3() 0.00/0.59 , quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y))) } 0.00/0.59 Strict Trs: 0.00/0.59 { minus(x, 0()) -> x 0.00/0.59 , minus(s(x), s(y)) -> minus(x, y) 0.00/0.59 , quot(0(), s(y)) -> 0() 0.00/0.59 , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) } 0.00/0.59 Obligation: 0.00/0.59 runtime complexity 0.00/0.59 Answer: 0.00/0.59 YES(O(1),O(n^1)) 0.00/0.59 0.00/0.59 We replace rewrite rules by usable rules: 0.00/0.59 0.00/0.59 Strict Usable Rules: 0.00/0.59 { minus(x, 0()) -> x 0.00/0.59 , minus(s(x), s(y)) -> minus(x, y) } 0.00/0.59 0.00/0.59 We are left with following problem, upon which TcT provides the 0.00/0.59 certificate YES(O(1),O(n^1)). 0.00/0.59 0.00/0.59 Strict DPs: 0.00/0.59 { minus^#(x, 0()) -> c_1(x) 0.00/0.59 , minus^#(s(x), s(y)) -> c_2(minus^#(x, y)) 0.00/0.59 , quot^#(0(), s(y)) -> c_3() 0.00/0.59 , quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y))) } 0.00/0.59 Strict Trs: 0.00/0.59 { minus(x, 0()) -> x 0.00/0.59 , minus(s(x), s(y)) -> minus(x, y) } 0.00/0.59 Obligation: 0.00/0.59 runtime complexity 0.00/0.59 Answer: 0.00/0.59 YES(O(1),O(n^1)) 0.00/0.59 0.00/0.59 The weightgap principle applies (using the following constant 0.00/0.59 growth matrix-interpretation) 0.00/0.59 0.00/0.59 The following argument positions are usable: 0.00/0.59 Uargs(c_2) = {1}, Uargs(quot^#) = {1}, Uargs(c_4) = {1} 0.00/0.59 0.00/0.59 TcT has computed the following constructor-restricted matrix 0.00/0.59 interpretation. 0.00/0.59 0.00/0.59 [minus](x1, x2) = [1 1] x1 + [2] 0.00/0.59 [1 1] [0] 0.00/0.59 0.00/0.59 [0] = [0] 0.00/0.59 [0] 0.00/0.59 0.00/0.59 [s](x1) = [1 1] x1 + [0] 0.00/0.59 [0 0] [2] 0.00/0.59 0.00/0.59 [minus^#](x1, x2) = [0 0] x1 + [0 0] x2 + [2] 0.00/0.59 [1 1] [1 1] [2] 0.00/0.59 0.00/0.59 [c_1](x1) = [0 0] x1 + [1] 0.00/0.59 [1 1] [1] 0.00/0.59 0.00/0.59 [c_2](x1) = [1 0] x1 + [1] 0.00/0.59 [0 1] [1] 0.00/0.59 0.00/0.59 [quot^#](x1, x2) = [1 0] x1 + [1] 0.00/0.59 [0 0] [0] 0.00/0.59 0.00/0.59 [c_3] = [0] 0.00/0.59 [0] 0.00/0.59 0.00/0.59 [c_4](x1) = [1 0] x1 + [1] 0.00/0.59 [0 1] [2] 0.00/0.59 0.00/0.59 The order satisfies the following ordering constraints: 0.00/0.59 0.00/0.59 [minus(x, 0())] = [1 1] x + [2] 0.00/0.59 [1 1] [0] 0.00/0.59 > [1 0] x + [0] 0.00/0.59 [0 1] [0] 0.00/0.59 = [x] 0.00/0.59 0.00/0.59 [minus(s(x), s(y))] = [1 1] x + [4] 0.00/0.59 [1 1] [2] 0.00/0.59 > [1 1] x + [2] 0.00/0.59 [1 1] [0] 0.00/0.59 = [minus(x, y)] 0.00/0.59 0.00/0.59 [minus^#(x, 0())] = [0 0] x + [2] 0.00/0.59 [1 1] [2] 0.00/0.59 > [0 0] x + [1] 0.00/0.59 [1 1] [1] 0.00/0.59 = [c_1(x)] 0.00/0.59 0.00/0.59 [minus^#(s(x), s(y))] = [0 0] x + [0 0] y + [2] 0.00/0.59 [1 1] [1 1] [6] 0.00/0.59 ? [0 0] x + [0 0] y + [3] 0.00/0.59 [1 1] [1 1] [3] 0.00/0.59 = [c_2(minus^#(x, y))] 0.00/0.59 0.00/0.59 [quot^#(0(), s(y))] = [1] 0.00/0.59 [0] 0.00/0.59 > [0] 0.00/0.59 [0] 0.00/0.59 = [c_3()] 0.00/0.59 0.00/0.59 [quot^#(s(x), s(y))] = [1 1] x + [1] 0.00/0.59 [0 0] [0] 0.00/0.59 ? [1 1] x + [4] 0.00/0.59 [0 0] [2] 0.00/0.59 = [c_4(quot^#(minus(x, y), s(y)))] 0.00/0.59 0.00/0.59 0.00/0.59 Further, it can be verified that all rules not oriented are covered by the weightgap condition. 0.00/0.59 0.00/0.59 We are left with following problem, upon which TcT provides the 0.00/0.59 certificate YES(O(1),O(n^1)). 0.00/0.59 0.00/0.59 Strict DPs: 0.00/0.59 { minus^#(s(x), s(y)) -> c_2(minus^#(x, y)) 0.00/0.59 , quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y))) } 0.00/0.59 Weak DPs: 0.00/0.59 { minus^#(x, 0()) -> c_1(x) 0.00/0.59 , quot^#(0(), s(y)) -> c_3() } 0.00/0.59 Weak Trs: 0.00/0.59 { minus(x, 0()) -> x 0.00/0.59 , minus(s(x), s(y)) -> minus(x, y) } 0.00/0.59 Obligation: 0.00/0.59 runtime complexity 0.00/0.59 Answer: 0.00/0.59 YES(O(1),O(n^1)) 0.00/0.59 0.00/0.59 The following weak DPs constitute a sub-graph of the DG that is 0.00/0.59 closed under successors. The DPs are removed. 0.00/0.59 0.00/0.59 { quot^#(0(), s(y)) -> c_3() } 0.00/0.59 0.00/0.59 We are left with following problem, upon which TcT provides the 0.00/0.59 certificate YES(O(1),O(n^1)). 0.00/0.59 0.00/0.59 Strict DPs: 0.00/0.59 { minus^#(s(x), s(y)) -> c_2(minus^#(x, y)) 0.00/0.59 , quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y))) } 0.00/0.59 Weak DPs: { minus^#(x, 0()) -> c_1(x) } 0.00/0.59 Weak Trs: 0.00/0.59 { minus(x, 0()) -> x 0.00/0.59 , minus(s(x), s(y)) -> minus(x, y) } 0.00/0.59 Obligation: 0.00/0.59 runtime complexity 0.00/0.59 Answer: 0.00/0.59 YES(O(1),O(n^1)) 0.00/0.59 0.00/0.59 We use the processor 'matrix interpretation of dimension 1' to 0.00/0.59 orient following rules strictly. 0.00/0.59 0.00/0.59 DPs: 0.00/0.59 { 2: quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y))) } 0.00/0.59 Trs: { minus(s(x), s(y)) -> minus(x, y) } 0.00/0.59 0.00/0.59 Sub-proof: 0.00/0.59 ---------- 0.00/0.59 The following argument positions are usable: 0.00/0.59 Uargs(c_2) = {1}, Uargs(c_4) = {1} 0.00/0.59 0.00/0.59 TcT has computed the following constructor-based matrix 0.00/0.59 interpretation satisfying not(EDA). 0.00/0.59 0.00/0.59 [minus](x1, x2) = [1] x1 + [0] 0.00/0.59 0.00/0.59 [0] = [0] 0.00/0.59 0.00/0.59 [s](x1) = [1] x1 + [1] 0.00/0.59 0.00/0.59 [minus^#](x1, x2) = [0] 0.00/0.59 0.00/0.59 [c_1](x1) = [0] 0.00/0.59 0.00/0.59 [c_2](x1) = [2] x1 + [0] 0.00/0.59 0.00/0.59 [quot^#](x1, x2) = [1] x1 + [0] 0.00/0.59 0.00/0.59 [c_4](x1) = [1] x1 + [0] 0.00/0.59 0.00/0.59 The order satisfies the following ordering constraints: 0.00/0.59 0.00/0.59 [minus(x, 0())] = [1] x + [0] 0.00/0.59 >= [1] x + [0] 0.00/0.59 = [x] 0.00/0.59 0.00/0.59 [minus(s(x), s(y))] = [1] x + [1] 0.00/0.59 > [1] x + [0] 0.00/0.59 = [minus(x, y)] 0.00/0.59 0.00/0.59 [minus^#(x, 0())] = [0] 0.00/0.59 >= [0] 0.00/0.59 = [c_1(x)] 0.00/0.59 0.00/0.59 [minus^#(s(x), s(y))] = [0] 0.00/0.59 >= [0] 0.00/0.59 = [c_2(minus^#(x, y))] 0.00/0.59 0.00/0.59 [quot^#(s(x), s(y))] = [1] x + [1] 0.00/0.59 > [1] x + [0] 0.00/0.59 = [c_4(quot^#(minus(x, y), s(y)))] 0.00/0.59 0.00/0.59 0.00/0.59 The strictly oriented rules are moved into the weak component. 0.00/0.59 0.00/0.59 We are left with following problem, upon which TcT provides the 0.00/0.59 certificate YES(O(1),O(n^1)). 0.00/0.59 0.00/0.59 Strict DPs: { minus^#(s(x), s(y)) -> c_2(minus^#(x, y)) } 0.00/0.59 Weak DPs: 0.00/0.59 { minus^#(x, 0()) -> c_1(x) 0.00/0.59 , quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y))) } 0.00/0.59 Weak Trs: 0.00/0.59 { minus(x, 0()) -> x 0.00/0.59 , minus(s(x), s(y)) -> minus(x, y) } 0.00/0.59 Obligation: 0.00/0.59 runtime complexity 0.00/0.59 Answer: 0.00/0.59 YES(O(1),O(n^1)) 0.00/0.59 0.00/0.59 The following weak DPs constitute a sub-graph of the DG that is 0.00/0.59 closed under successors. The DPs are removed. 0.00/0.59 0.00/0.59 { quot^#(s(x), s(y)) -> c_4(quot^#(minus(x, y), s(y))) } 0.00/0.59 0.00/0.59 We are left with following problem, upon which TcT provides the 0.00/0.59 certificate YES(O(1),O(n^1)). 0.00/0.59 0.00/0.59 Strict DPs: { minus^#(s(x), s(y)) -> c_2(minus^#(x, y)) } 0.00/0.59 Weak DPs: { minus^#(x, 0()) -> c_1(x) } 0.00/0.59 Weak Trs: 0.00/0.59 { minus(x, 0()) -> x 0.00/0.59 , minus(s(x), s(y)) -> minus(x, y) } 0.00/0.59 Obligation: 0.00/0.59 runtime complexity 0.00/0.59 Answer: 0.00/0.59 YES(O(1),O(n^1)) 0.00/0.59 0.00/0.59 No rule is usable, rules are removed from the input problem. 0.00/0.59 0.00/0.59 We are left with following problem, upon which TcT provides the 0.00/0.59 certificate YES(O(1),O(n^1)). 0.00/0.59 0.00/0.59 Strict DPs: { minus^#(s(x), s(y)) -> c_2(minus^#(x, y)) } 0.00/0.59 Weak DPs: { minus^#(x, 0()) -> c_1(x) } 0.00/0.59 Obligation: 0.00/0.59 runtime complexity 0.00/0.59 Answer: 0.00/0.59 YES(O(1),O(n^1)) 0.00/0.59 0.00/0.59 We use the processor 'matrix interpretation of dimension 1' to 0.00/0.59 orient following rules strictly. 0.00/0.59 0.00/0.59 DPs: 0.00/0.59 { 1: minus^#(s(x), s(y)) -> c_2(minus^#(x, y)) } 0.00/0.59 0.00/0.59 Sub-proof: 0.00/0.59 ---------- 0.00/0.59 The following argument positions are usable: 0.00/0.59 Uargs(c_2) = {1} 0.00/0.59 0.00/0.59 TcT has computed the following constructor-based matrix 0.00/0.59 interpretation satisfying not(EDA). 0.00/0.59 0.00/0.59 [minus](x1, x2) = [7] x1 + [7] x2 + [0] 0.00/0.59 0.00/0.59 [0] = [7] 0.00/0.59 0.00/0.59 [s](x1) = [1] x1 + [4] 0.00/0.59 0.00/0.59 [minus^#](x1, x2) = [2] x1 + [0] 0.00/0.59 0.00/0.59 [c_1](x1) = [2] x1 + [0] 0.00/0.59 0.00/0.59 [c_2](x1) = [1] x1 + [1] 0.00/0.59 0.00/0.59 [quot^#](x1, x2) = [7] x1 + [7] x2 + [0] 0.00/0.59 0.00/0.59 [c_4](x1) = [7] x1 + [0] 0.00/0.59 0.00/0.59 The order satisfies the following ordering constraints: 0.00/0.59 0.00/0.59 [minus^#(x, 0())] = [2] x + [0] 0.00/0.59 >= [2] x + [0] 0.00/0.59 = [c_1(x)] 0.00/0.59 0.00/0.59 [minus^#(s(x), s(y))] = [2] x + [8] 0.00/0.59 > [2] x + [1] 0.00/0.59 = [c_2(minus^#(x, y))] 0.00/0.59 0.00/0.59 0.00/0.59 The strictly oriented rules are moved into the weak component. 0.00/0.59 0.00/0.59 We are left with following problem, upon which TcT provides the 0.00/0.59 certificate YES(O(1),O(1)). 0.00/0.59 0.00/0.59 Weak DPs: 0.00/0.59 { minus^#(x, 0()) -> c_1(x) 0.00/0.59 , minus^#(s(x), s(y)) -> c_2(minus^#(x, y)) } 0.00/0.59 Obligation: 0.00/0.59 runtime complexity 0.00/0.59 Answer: 0.00/0.59 YES(O(1),O(1)) 0.00/0.59 0.00/0.59 The following weak DPs constitute a sub-graph of the DG that is 0.00/0.59 closed under successors. The DPs are removed. 0.00/0.59 0.00/0.59 { minus^#(x, 0()) -> c_1(x) 0.00/0.59 , minus^#(s(x), s(y)) -> c_2(minus^#(x, y)) } 0.00/0.59 0.00/0.59 We are left with following problem, upon which TcT provides the 0.00/0.59 certificate YES(O(1),O(1)). 0.00/0.59 0.00/0.59 Rules: Empty 0.00/0.59 Obligation: 0.00/0.59 runtime complexity 0.00/0.59 Answer: 0.00/0.59 YES(O(1),O(1)) 0.00/0.59 0.00/0.59 Empty rules are trivially bounded 0.00/0.59 0.00/0.59 Hurray, we answered YES(O(1),O(n^1)) 0.00/0.59 EOF