YES(O(1),O(n^2)) 167.94/60.08 YES(O(1),O(n^2)) 167.94/60.08 167.94/60.08 We are left with following problem, upon which TcT provides the 167.94/60.08 certificate YES(O(1),O(n^2)). 167.94/60.08 167.94/60.08 Strict Trs: 167.94/60.08 { active(f(f(a()))) -> mark(f(g(f(a())))) 167.94/60.08 , f(active(X)) -> f(X) 167.94/60.08 , f(mark(X)) -> f(X) 167.94/60.08 , mark(f(X)) -> active(f(mark(X))) 167.94/60.08 , mark(a()) -> active(a()) 167.94/60.08 , mark(g(X)) -> active(g(X)) 167.94/60.08 , g(active(X)) -> g(X) 167.94/60.08 , g(mark(X)) -> g(X) } 167.94/60.08 Obligation: 167.94/60.08 derivational complexity 167.94/60.08 Answer: 167.94/60.08 YES(O(1),O(n^2)) 167.94/60.08 167.94/60.08 The weightgap principle applies (using the following nonconstant 167.94/60.08 growth matrix-interpretation) 167.94/60.08 167.94/60.08 TcT has computed the following triangular matrix interpretation. 167.94/60.08 Note that the diagonal of the component-wise maxima of 167.94/60.08 interpretation-entries contains no more than 1 non-zero entries. 167.94/60.08 167.94/60.08 [active](x1) = [1] x1 + [0] 167.94/60.08 167.94/60.08 [f](x1) = [1] x1 + [0] 167.94/60.08 167.94/60.08 [a] = [0] 167.94/60.08 167.94/60.08 [mark](x1) = [1] x1 + [1] 167.94/60.08 167.94/60.08 [g](x1) = [1] x1 + [0] 167.94/60.08 167.94/60.08 The order satisfies the following ordering constraints: 167.94/60.08 167.94/60.08 [active(f(f(a())))] = [0] 167.94/60.08 ? [1] 167.94/60.08 = [mark(f(g(f(a()))))] 167.94/60.08 167.94/60.08 [f(active(X))] = [1] X + [0] 167.94/60.08 >= [1] X + [0] 167.94/60.08 = [f(X)] 167.94/60.08 167.94/60.08 [f(mark(X))] = [1] X + [1] 167.94/60.08 > [1] X + [0] 167.94/60.08 = [f(X)] 167.94/60.08 167.94/60.08 [mark(f(X))] = [1] X + [1] 167.94/60.08 >= [1] X + [1] 167.94/60.08 = [active(f(mark(X)))] 167.94/60.08 167.94/60.08 [mark(a())] = [1] 167.94/60.08 > [0] 167.94/60.08 = [active(a())] 167.94/60.08 167.94/60.08 [mark(g(X))] = [1] X + [1] 167.94/60.08 > [1] X + [0] 167.94/60.08 = [active(g(X))] 167.94/60.08 167.94/60.08 [g(active(X))] = [1] X + [0] 167.94/60.08 >= [1] X + [0] 167.94/60.08 = [g(X)] 167.94/60.08 167.94/60.08 [g(mark(X))] = [1] X + [1] 167.94/60.08 > [1] X + [0] 167.94/60.08 = [g(X)] 167.94/60.08 167.94/60.08 167.94/60.08 Further, it can be verified that all rules not oriented are covered by the weightgap condition. 167.94/60.08 167.94/60.08 We are left with following problem, upon which TcT provides the 167.94/60.08 certificate YES(O(1),O(n^2)). 167.94/60.08 167.94/60.08 Strict Trs: 167.94/60.08 { active(f(f(a()))) -> mark(f(g(f(a())))) 167.94/60.08 , f(active(X)) -> f(X) 167.94/60.08 , mark(f(X)) -> active(f(mark(X))) 167.94/60.08 , g(active(X)) -> g(X) } 167.94/60.08 Weak Trs: 167.94/60.08 { f(mark(X)) -> f(X) 167.94/60.08 , mark(a()) -> active(a()) 167.94/60.08 , mark(g(X)) -> active(g(X)) 167.94/60.08 , g(mark(X)) -> g(X) } 167.94/60.08 Obligation: 167.94/60.08 derivational complexity 167.94/60.08 Answer: 167.94/60.08 YES(O(1),O(n^2)) 167.94/60.08 167.94/60.08 The weightgap principle applies (using the following nonconstant 167.94/60.08 growth matrix-interpretation) 167.94/60.08 167.94/60.08 TcT has computed the following triangular matrix interpretation. 167.94/60.08 Note that the diagonal of the component-wise maxima of 167.94/60.08 interpretation-entries contains no more than 1 non-zero entries. 167.94/60.08 167.94/60.08 [active](x1) = [1] x1 + [1] 167.94/60.08 167.94/60.08 [f](x1) = [1] x1 + [0] 167.94/60.08 167.94/60.08 [a] = [0] 167.94/60.08 167.94/60.08 [mark](x1) = [1] x1 + [1] 167.94/60.08 167.94/60.08 [g](x1) = [1] x1 + [0] 167.94/60.08 167.94/60.08 The order satisfies the following ordering constraints: 167.94/60.08 167.94/60.08 [active(f(f(a())))] = [1] 167.94/60.08 >= [1] 167.94/60.08 = [mark(f(g(f(a()))))] 167.94/60.08 167.94/60.08 [f(active(X))] = [1] X + [1] 167.94/60.08 > [1] X + [0] 167.94/60.08 = [f(X)] 167.94/60.08 167.94/60.08 [f(mark(X))] = [1] X + [1] 167.94/60.08 > [1] X + [0] 167.94/60.08 = [f(X)] 167.94/60.08 167.94/60.08 [mark(f(X))] = [1] X + [1] 167.94/60.08 ? [1] X + [2] 167.94/60.08 = [active(f(mark(X)))] 167.94/60.08 167.94/60.08 [mark(a())] = [1] 167.94/60.08 >= [1] 167.94/60.08 = [active(a())] 167.94/60.08 167.94/60.08 [mark(g(X))] = [1] X + [1] 167.94/60.08 >= [1] X + [1] 167.94/60.08 = [active(g(X))] 167.94/60.08 167.94/60.08 [g(active(X))] = [1] X + [1] 167.94/60.08 > [1] X + [0] 167.94/60.08 = [g(X)] 167.94/60.08 167.94/60.08 [g(mark(X))] = [1] X + [1] 167.94/60.08 > [1] X + [0] 167.94/60.08 = [g(X)] 167.94/60.08 167.94/60.08 167.94/60.08 Further, it can be verified that all rules not oriented are covered by the weightgap condition. 167.94/60.08 167.94/60.08 We are left with following problem, upon which TcT provides the 167.94/60.08 certificate YES(O(1),O(n^2)). 167.94/60.08 167.94/60.08 Strict Trs: 167.94/60.08 { active(f(f(a()))) -> mark(f(g(f(a())))) 167.94/60.08 , mark(f(X)) -> active(f(mark(X))) } 167.94/60.08 Weak Trs: 167.94/60.08 { f(active(X)) -> f(X) 167.94/60.08 , f(mark(X)) -> f(X) 167.94/60.08 , mark(a()) -> active(a()) 167.94/60.08 , mark(g(X)) -> active(g(X)) 167.94/60.08 , g(active(X)) -> g(X) 167.94/60.08 , g(mark(X)) -> g(X) } 167.94/60.08 Obligation: 167.94/60.08 derivational complexity 167.94/60.08 Answer: 167.94/60.08 YES(O(1),O(n^2)) 167.94/60.08 167.94/60.08 We use the processor 'matrix interpretation of dimension 2' to 167.94/60.08 orient following rules strictly. 167.94/60.08 167.94/60.08 Trs: { active(f(f(a()))) -> mark(f(g(f(a())))) } 167.94/60.08 167.94/60.08 The induced complexity on above rules (modulo remaining rules) is 167.94/60.08 YES(?,O(n^1)) . These rules are moved into the corresponding weak 167.94/60.08 component(s). 167.94/60.08 167.94/60.08 Sub-proof: 167.94/60.08 ---------- 167.94/60.08 TcT has computed the following triangular matrix interpretation. 167.94/60.08 Note that the diagonal of the component-wise maxima of 167.94/60.08 interpretation-entries contains no more than 1 non-zero entries. 167.94/60.08 167.94/60.08 [active](x1) = [1 1] x1 + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 167.94/60.08 [f](x1) = [1 1] x1 + [0] 167.94/60.08 [0 0] [1] 167.94/60.08 167.94/60.08 [a] = [0] 167.94/60.08 [2] 167.94/60.08 167.94/60.08 [mark](x1) = [1 1] x1 + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 167.94/60.08 [g](x1) = [1 0] x1 + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 167.94/60.08 The order satisfies the following ordering constraints: 167.94/60.08 167.94/60.08 [active(f(f(a())))] = [4] 167.94/60.08 [0] 167.94/60.08 > [3] 167.94/60.08 [0] 167.94/60.08 = [mark(f(g(f(a()))))] 167.94/60.08 167.94/60.08 [f(active(X))] = [1 1] X + [0] 167.94/60.08 [0 0] [1] 167.94/60.08 >= [1 1] X + [0] 167.94/60.08 [0 0] [1] 167.94/60.08 = [f(X)] 167.94/60.08 167.94/60.08 [f(mark(X))] = [1 1] X + [0] 167.94/60.08 [0 0] [1] 167.94/60.08 >= [1 1] X + [0] 167.94/60.08 [0 0] [1] 167.94/60.08 = [f(X)] 167.94/60.08 167.94/60.08 [mark(f(X))] = [1 1] X + [1] 167.94/60.08 [0 0] [0] 167.94/60.08 >= [1 1] X + [1] 167.94/60.08 [0 0] [0] 167.94/60.08 = [active(f(mark(X)))] 167.94/60.08 167.94/60.08 [mark(a())] = [2] 167.94/60.08 [0] 167.94/60.08 >= [2] 167.94/60.08 [0] 167.94/60.08 = [active(a())] 167.94/60.08 167.94/60.08 [mark(g(X))] = [1 0] X + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 >= [1 0] X + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 = [active(g(X))] 167.94/60.08 167.94/60.08 [g(active(X))] = [1 1] X + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 >= [1 0] X + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 = [g(X)] 167.94/60.08 167.94/60.08 [g(mark(X))] = [1 1] X + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 >= [1 0] X + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 = [g(X)] 167.94/60.08 167.94/60.08 167.94/60.08 We return to the main proof. 167.94/60.08 167.94/60.08 We are left with following problem, upon which TcT provides the 167.94/60.08 certificate YES(O(1),O(n^2)). 167.94/60.08 167.94/60.08 Strict Trs: { mark(f(X)) -> active(f(mark(X))) } 167.94/60.08 Weak Trs: 167.94/60.08 { active(f(f(a()))) -> mark(f(g(f(a())))) 167.94/60.08 , f(active(X)) -> f(X) 167.94/60.08 , f(mark(X)) -> f(X) 167.94/60.08 , mark(a()) -> active(a()) 167.94/60.08 , mark(g(X)) -> active(g(X)) 167.94/60.08 , g(active(X)) -> g(X) 167.94/60.08 , g(mark(X)) -> g(X) } 167.94/60.08 Obligation: 167.94/60.08 derivational complexity 167.94/60.08 Answer: 167.94/60.08 YES(O(1),O(n^2)) 167.94/60.08 167.94/60.08 We use the processor 'matrix interpretation of dimension 2' to 167.94/60.08 orient following rules strictly. 167.94/60.08 167.94/60.08 Trs: { mark(f(X)) -> active(f(mark(X))) } 167.94/60.08 167.94/60.08 The induced complexity on above rules (modulo remaining rules) is 167.94/60.08 YES(?,O(n^2)) . These rules are moved into the corresponding weak 167.94/60.08 component(s). 167.94/60.08 167.94/60.08 Sub-proof: 167.94/60.08 ---------- 167.94/60.08 TcT has computed the following triangular matrix interpretation. 167.94/60.08 167.94/60.08 [active](x1) = [1 0] x1 + [0] 167.94/60.08 [0 1] [0] 167.94/60.08 167.94/60.08 [f](x1) = [1 2] x1 + [0] 167.94/60.08 [0 1] [2] 167.94/60.08 167.94/60.08 [a] = [0] 167.94/60.08 [0] 167.94/60.08 167.94/60.08 [mark](x1) = [1 2] x1 + [0] 167.94/60.08 [0 1] [0] 167.94/60.08 167.94/60.08 [g](x1) = [1 0] x1 + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 167.94/60.08 The order satisfies the following ordering constraints: 167.94/60.08 167.94/60.08 [active(f(f(a())))] = [4] 167.94/60.08 [4] 167.94/60.08 >= [4] 167.94/60.08 [2] 167.94/60.08 = [mark(f(g(f(a()))))] 167.94/60.08 167.94/60.08 [f(active(X))] = [1 2] X + [0] 167.94/60.08 [0 1] [2] 167.94/60.08 >= [1 2] X + [0] 167.94/60.08 [0 1] [2] 167.94/60.08 = [f(X)] 167.94/60.08 167.94/60.08 [f(mark(X))] = [1 4] X + [0] 167.94/60.08 [0 1] [2] 167.94/60.08 >= [1 2] X + [0] 167.94/60.08 [0 1] [2] 167.94/60.08 = [f(X)] 167.94/60.08 167.94/60.08 [mark(f(X))] = [1 4] X + [4] 167.94/60.08 [0 1] [2] 167.94/60.08 > [1 4] X + [0] 167.94/60.08 [0 1] [2] 167.94/60.08 = [active(f(mark(X)))] 167.94/60.08 167.94/60.08 [mark(a())] = [0] 167.94/60.08 [0] 167.94/60.08 >= [0] 167.94/60.08 [0] 167.94/60.08 = [active(a())] 167.94/60.08 167.94/60.08 [mark(g(X))] = [1 0] X + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 >= [1 0] X + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 = [active(g(X))] 167.94/60.08 167.94/60.08 [g(active(X))] = [1 0] X + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 >= [1 0] X + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 = [g(X)] 167.94/60.08 167.94/60.08 [g(mark(X))] = [1 2] X + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 >= [1 0] X + [0] 167.94/60.08 [0 0] [0] 167.94/60.08 = [g(X)] 167.94/60.08 167.94/60.08 167.94/60.08 We return to the main proof. 167.94/60.08 167.94/60.08 We are left with following problem, upon which TcT provides the 167.94/60.08 certificate YES(O(1),O(1)). 167.94/60.08 167.94/60.08 Weak Trs: 167.94/60.08 { active(f(f(a()))) -> mark(f(g(f(a())))) 167.94/60.08 , f(active(X)) -> f(X) 167.94/60.08 , f(mark(X)) -> f(X) 167.94/60.08 , mark(f(X)) -> active(f(mark(X))) 167.94/60.08 , mark(a()) -> active(a()) 167.94/60.08 , mark(g(X)) -> active(g(X)) 167.94/60.08 , g(active(X)) -> g(X) 167.94/60.08 , g(mark(X)) -> g(X) } 167.94/60.08 Obligation: 167.94/60.08 derivational complexity 167.94/60.08 Answer: 167.94/60.08 YES(O(1),O(1)) 167.94/60.08 167.94/60.08 Empty rules are trivially bounded 167.94/60.08 167.94/60.08 Hurray, we answered YES(O(1),O(n^2)) 168.16/60.11 EOF