YES(?,O(n^1)) 345.65/156.38 YES(?,O(n^1)) 345.65/156.38 345.65/156.38 We are left with following problem, upon which TcT provides the 345.65/156.38 certificate YES(?,O(n^1)). 345.65/156.38 345.65/156.38 Strict Trs: 345.65/156.38 { f(g(i(a(), b(), b'()), c()), d()) -> 345.65/156.38 if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'())) 345.65/156.38 , f(g(h(a(), b()), c()), d()) -> 345.65/156.38 if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'())) } 345.65/156.38 Obligation: 345.65/156.38 derivational complexity 345.65/156.38 Answer: 345.65/156.38 YES(?,O(n^1)) 345.65/156.38 345.65/156.38 TcT has computed the following matrix interpretation satisfying 345.65/156.38 not(EDA) and not(IDA(1)). 345.65/156.38 345.65/156.38 [1 1 0 0] [1 1 0 0] [0] 345.65/156.38 [f](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0] 345.65/156.38 [0 0 0 0] [0 0 0 0] [0] 345.65/156.38 [0 0 0 0] [0 0 0 0] [0] 345.65/156.38 345.65/156.38 [1 0 0 0] [1 0 0 0] [0] 345.65/156.38 [g](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [1] 345.65/156.38 [0 0 0 0] [0 0 0 0] [0] 345.65/156.38 [0 0 0 0] [0 0 0 0] [0] 345.65/156.38 345.65/156.38 [1 0 0 0] [1 0 0 0] [1 0 0 0] [0] 345.65/156.38 [i](x1, x2, x3) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0 0 0 0] x3 + [0] 345.65/156.38 [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] 345.65/156.38 [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] 345.65/156.38 345.65/156.38 [0] 345.65/156.38 [a] = [0] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 345.65/156.38 [0] 345.65/156.38 [b] = [0] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 345.65/156.38 [1] 345.65/156.38 [b'] = [0] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 345.65/156.38 [0] 345.65/156.38 [c] = [0] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 345.65/156.38 [0] 345.65/156.38 [d] = [1] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 345.65/156.38 [1 0 0 0] [1 0 0 0] [1 0 0 0] [0] 345.65/156.38 [if](x1, x2, x3) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0 0 0 0] x3 + [0] 345.65/156.38 [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] 345.65/156.38 [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] 345.65/156.38 345.65/156.38 [0] 345.65/156.38 [e] = [0] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 345.65/156.38 [1 0 0 0] [1 0 0 0] [0] 345.65/156.38 [.](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0] 345.65/156.38 [0 0 0 0] [0 0 0 0] [0] 345.65/156.38 [0 0 0 0] [0 0 0 0] [0] 345.65/156.38 345.65/156.38 [0] 345.65/156.38 [d'] = [0] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 345.65/156.38 [1 0 0 0] [1 0 0 0] [0] 345.65/156.38 [h](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0] 345.65/156.38 [0 0 0 0] [0 0 0 0] [0] 345.65/156.38 [0 0 0 0] [0 0 0 0] [0] 345.65/156.38 345.65/156.38 The order satisfies the following ordering constraints: 345.65/156.38 345.65/156.38 [f(g(i(a(), b(), b'()), c()), d())] = [3] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 > [1] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 = [if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'()))] 345.65/156.38 345.65/156.38 [f(g(h(a(), b()), c()), d())] = [2] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 > [1] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 [0] 345.65/156.38 = [if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'()))] 345.65/156.38 345.65/156.38 345.65/156.38 Hurray, we answered YES(?,O(n^1)) 345.85/156.47 EOF