YES(O(1),O(n^2)) 161.67/60.07 YES(O(1),O(n^2)) 161.67/60.07 161.67/60.07 We are left with following problem, upon which TcT provides the 161.67/60.07 certificate YES(O(1),O(n^2)). 161.67/60.07 161.67/60.07 Strict Trs: 161.67/60.07 { f(x, y) -> g(x, y) 161.67/60.07 , g(h(x), y) -> h(f(x, y)) 161.67/60.07 , g(h(x), y) -> h(g(x, y)) } 161.67/60.07 Obligation: 161.67/60.07 derivational complexity 161.67/60.07 Answer: 161.67/60.07 YES(O(1),O(n^2)) 161.67/60.07 161.67/60.07 The weightgap principle applies (using the following nonconstant 161.67/60.07 growth matrix-interpretation) 161.67/60.07 161.67/60.07 TcT has computed the following triangular matrix interpretation. 161.67/60.07 Note that the diagonal of the component-wise maxima of 161.67/60.07 interpretation-entries contains no more than 1 non-zero entries. 161.67/60.07 161.67/60.07 [f](x1, x2) = [1] x1 + [1] x2 + [1] 161.67/60.07 161.67/60.07 [g](x1, x2) = [1] x1 + [1] x2 + [0] 161.67/60.07 161.67/60.07 [h](x1) = [1] x1 + [0] 161.67/60.07 161.67/60.07 The order satisfies the following ordering constraints: 161.67/60.07 161.67/60.07 [f(x, y)] = [1] x + [1] y + [1] 161.67/60.07 > [1] x + [1] y + [0] 161.67/60.07 = [g(x, y)] 161.67/60.07 161.67/60.07 [g(h(x), y)] = [1] x + [1] y + [0] 161.67/60.07 ? [1] x + [1] y + [1] 161.67/60.07 = [h(f(x, y))] 161.67/60.07 161.67/60.07 [g(h(x), y)] = [1] x + [1] y + [0] 161.67/60.07 >= [1] x + [1] y + [0] 161.67/60.07 = [h(g(x, y))] 161.67/60.07 161.67/60.07 161.67/60.07 Further, it can be verified that all rules not oriented are covered by the weightgap condition. 161.67/60.07 161.67/60.07 We are left with following problem, upon which TcT provides the 161.67/60.07 certificate YES(O(1),O(n^2)). 161.67/60.07 161.67/60.07 Strict Trs: 161.67/60.07 { g(h(x), y) -> h(f(x, y)) 161.67/60.07 , g(h(x), y) -> h(g(x, y)) } 161.67/60.07 Weak Trs: { f(x, y) -> g(x, y) } 161.67/60.07 Obligation: 161.67/60.07 derivational complexity 161.67/60.07 Answer: 161.67/60.07 YES(O(1),O(n^2)) 161.67/60.07 161.67/60.07 We use the processor 'matrix interpretation of dimension 2' to 161.67/60.07 orient following rules strictly. 161.67/60.07 161.67/60.07 Trs: 161.67/60.07 { g(h(x), y) -> h(f(x, y)) 161.67/60.07 , g(h(x), y) -> h(g(x, y)) } 161.67/60.07 161.67/60.07 The induced complexity on above rules (modulo remaining rules) is 161.67/60.07 YES(?,O(n^2)) . These rules are moved into the corresponding weak 161.67/60.07 component(s). 161.67/60.07 161.67/60.07 Sub-proof: 161.67/60.07 ---------- 161.67/60.07 TcT has computed the following triangular matrix interpretation. 161.67/60.07 161.67/60.07 [f](x1, x2) = [1 1] x1 + [1 2] x2 + [0] 161.67/60.07 [0 1] [0 1] [2] 161.67/60.07 161.67/60.07 [g](x1, x2) = [1 1] x1 + [1 2] x2 + [0] 161.67/60.07 [0 1] [0 1] [2] 161.67/60.07 161.67/60.07 [h](x1) = [1 0] x1 + [0] 161.67/60.07 [0 1] [2] 161.67/60.07 161.67/60.07 The order satisfies the following ordering constraints: 161.67/60.07 161.67/60.07 [f(x, y)] = [1 1] x + [1 2] y + [0] 161.67/60.07 [0 1] [0 1] [2] 161.67/60.07 >= [1 1] x + [1 2] y + [0] 161.67/60.07 [0 1] [0 1] [2] 161.67/60.07 = [g(x, y)] 161.67/60.07 161.67/60.07 [g(h(x), y)] = [1 1] x + [1 2] y + [2] 161.67/60.07 [0 1] [0 1] [4] 161.67/60.07 > [1 1] x + [1 2] y + [0] 161.67/60.07 [0 1] [0 1] [4] 161.67/60.07 = [h(f(x, y))] 161.67/60.07 161.67/60.07 [g(h(x), y)] = [1 1] x + [1 2] y + [2] 161.67/60.07 [0 1] [0 1] [4] 161.67/60.07 > [1 1] x + [1 2] y + [0] 161.67/60.07 [0 1] [0 1] [4] 161.67/60.07 = [h(g(x, y))] 161.67/60.07 161.67/60.07 161.67/60.07 We return to the main proof. 161.67/60.07 161.67/60.07 We are left with following problem, upon which TcT provides the 161.67/60.07 certificate YES(O(1),O(1)). 161.67/60.07 161.67/60.07 Weak Trs: 161.67/60.07 { f(x, y) -> g(x, y) 161.67/60.07 , g(h(x), y) -> h(f(x, y)) 161.67/60.07 , g(h(x), y) -> h(g(x, y)) } 161.67/60.07 Obligation: 161.67/60.07 derivational complexity 161.67/60.07 Answer: 161.67/60.07 YES(O(1),O(1)) 161.67/60.07 161.67/60.07 Empty rules are trivially bounded 161.67/60.07 161.67/60.07 Hurray, we answered YES(O(1),O(n^2)) 161.67/60.07 EOF