YES(?,O(n^1)) 1127.91/297.10 YES(?,O(n^1)) 1127.91/297.10 1127.91/297.10 We are left with following problem, upon which TcT provides the 1127.91/297.10 certificate YES(?,O(n^1)). 1127.91/297.10 1127.91/297.10 Strict Trs: 1127.91/297.10 { 0(0(0(0(4(5(x1)))))) -> 0(2(3(2(4(1(5(2(3(5(x1)))))))))) 1127.91/297.10 , 0(0(0(2(0(4(x1)))))) -> 3(2(2(1(2(4(1(1(0(4(x1)))))))))) 1127.91/297.10 , 0(0(0(4(0(x1))))) -> 3(4(4(4(1(2(2(0(3(4(x1)))))))))) 1127.91/297.10 , 0(0(1(2(3(0(5(x1))))))) -> 3(2(1(3(2(1(4(3(5(5(x1)))))))))) 1127.91/297.10 , 0(0(4(5(3(0(x1)))))) -> 1(2(2(3(5(2(2(1(1(4(x1)))))))))) 1127.91/297.10 , 0(0(5(1(5(1(3(x1))))))) -> 3(3(1(3(3(5(0(3(2(2(x1)))))))))) 1127.91/297.10 , 0(0(5(2(5(2(1(x1))))))) -> 2(3(5(3(4(2(2(1(2(0(x1)))))))))) 1127.91/297.10 , 0(0(5(4(2(0(2(x1))))))) -> 3(2(3(2(2(0(0(3(1(3(x1)))))))))) 1127.91/297.10 , 0(1(0(x1))) -> 2(3(3(2(2(3(2(4(2(4(x1)))))))))) 1127.91/297.10 , 0(1(0(5(5(2(0(x1))))))) -> 3(2(2(4(3(3(3(0(2(0(x1)))))))))) 1127.91/297.10 , 0(1(5(3(1(1(x1)))))) -> 3(2(1(3(2(1(2(5(5(3(x1)))))))))) 1127.91/297.10 , 0(2(0(0(1(1(x1)))))) -> 3(4(2(3(1(2(3(2(3(3(x1)))))))))) 1127.91/297.10 , 0(2(0(3(0(0(2(x1))))))) -> 3(2(3(1(3(4(4(5(2(3(x1)))))))))) 1127.91/297.10 , 0(2(2(5(0(4(3(x1))))))) -> 0(4(1(1(2(2(3(2(5(3(x1)))))))))) 1127.91/297.10 , 0(2(4(0(1(5(4(x1))))))) -> 3(2(0(1(3(2(1(5(3(4(x1)))))))))) 1127.91/297.10 , 0(3(0(0(0(0(0(x1))))))) -> 2(0(5(2(3(1(0(2(4(4(x1)))))))))) 1127.91/297.10 , 0(4(0(0(0(4(3(x1))))))) -> 0(5(5(2(1(3(2(3(3(3(x1)))))))))) 1127.91/297.10 , 0(4(4(1(1(x1))))) -> 0(4(2(3(2(2(2(2(2(2(x1)))))))))) 1127.91/297.10 , 0(4(5(5(5(0(4(x1))))))) -> 2(3(5(1(2(3(0(2(4(4(x1)))))))))) 1127.91/297.10 , 0(5(0(0(0(2(x1)))))) -> 2(3(2(0(5(4(3(1(2(1(x1)))))))))) 1127.91/297.10 , 0(5(1(1(5(0(0(x1))))))) -> 3(2(1(0(5(2(0(3(3(4(x1)))))))))) 1127.91/297.10 , 0(5(2(2(4(1(0(x1))))))) -> 2(3(3(1(2(3(2(3(0(4(x1)))))))))) 1127.91/297.10 , 0(5(3(1(4(3(1(x1))))))) -> 2(3(2(1(3(4(4(1(0(1(x1)))))))))) 1127.91/297.10 , 0(5(4(1(2(x1))))) -> 3(2(1(3(3(4(2(3(2(1(x1)))))))))) 1127.91/297.10 , 1(0(0(3(0(x1))))) -> 1(1(2(3(2(3(2(4(3(0(x1)))))))))) 1127.91/297.10 , 1(0(3(1(0(0(0(x1))))))) -> 2(4(2(2(5(3(2(4(4(4(x1)))))))))) 1127.91/297.10 , 1(1(2(4(4(0(2(x1))))))) -> 1(1(2(2(3(2(1(5(2(2(x1)))))))))) 1127.91/297.10 , 1(2(4(4(0(5(1(x1))))))) -> 1(3(3(2(2(3(5(1(0(3(x1)))))))))) 1127.91/297.10 , 1(3(0(0(3(3(5(x1))))))) -> 3(2(2(1(2(4(5(4(3(5(x1)))))))))) 1127.91/297.10 , 1(4(0(3(0(4(x1)))))) -> 3(2(2(5(3(3(2(1(4(4(x1)))))))))) 1127.91/297.10 , 1(4(1(3(0(4(3(x1))))))) -> 1(3(5(1(2(3(2(2(5(1(x1)))))))))) 1127.91/297.10 , 1(4(4(0(0(0(0(x1))))))) -> 2(1(2(4(3(3(5(3(1(0(x1)))))))))) 1127.91/297.10 , 1(5(0(0(5(3(3(x1))))))) -> 1(5(4(3(2(1(1(3(2(1(x1)))))))))) 1127.91/297.10 , 3(0(0(1(3(5(x1)))))) -> 2(1(3(3(2(0(5(3(1(5(x1)))))))))) 1127.91/297.10 , 3(1(4(0(1(2(x1)))))) -> 2(3(2(2(1(0(3(1(1(2(x1)))))))))) 1127.91/297.10 , 4(0(0(0(4(0(2(x1))))))) -> 4(4(2(2(3(2(4(1(2(2(x1)))))))))) 1127.91/297.10 , 4(0(0(0(4(1(4(x1))))))) -> 4(4(3(2(1(1(2(1(0(0(x1)))))))))) 1127.91/297.10 , 4(0(0(1(3(1(x1)))))) -> 3(2(2(1(2(0(5(4(4(1(x1)))))))))) 1127.91/297.10 , 4(0(0(4(0(0(2(x1))))))) -> 3(0(3(2(3(3(5(4(1(5(x1)))))))))) 1127.91/297.10 , 4(0(0(4(5(2(4(x1))))))) -> 3(3(5(2(2(2(3(4(4(0(x1)))))))))) 1127.91/297.10 , 4(0(3(0(2(5(1(x1))))))) -> 4(3(3(2(3(4(3(1(0(3(x1)))))))))) 1127.91/297.10 , 4(0(4(0(1(1(2(x1))))))) -> 2(2(0(3(1(4(3(2(2(2(x1)))))))))) 1127.91/297.10 , 4(0(4(1(4(0(0(x1))))))) -> 3(1(2(2(0(0(2(1(1(4(x1)))))))))) 1127.91/297.10 , 4(1(0(5(4(1(4(x1))))))) -> 2(5(1(2(1(3(2(4(3(4(x1)))))))))) 1127.91/297.10 , 4(1(2(5(4(0(0(x1))))))) -> 2(4(5(1(3(0(3(2(0(4(x1)))))))))) 1127.91/297.10 , 4(1(4(0(3(1(0(x1))))))) -> 5(3(2(0(2(2(2(5(1(4(x1)))))))))) 1127.91/297.10 , 4(3(0(5(5(0(2(x1))))))) -> 3(0(3(2(3(2(2(4(5(2(x1)))))))))) 1127.91/297.10 , 4(3(5(5(4(1(0(x1))))))) -> 3(5(1(3(4(5(2(3(3(4(x1)))))))))) 1127.91/297.10 , 4(5(0(2(4(1(x1)))))) -> 2(1(4(2(3(2(2(3(4(1(x1)))))))))) 1127.91/297.10 , 5(0(0(0(1(4(0(x1))))))) -> 5(2(5(3(2(2(3(0(5(4(x1)))))))))) 1127.91/297.10 , 5(0(2(1(5(1(5(x1))))))) -> 5(3(2(3(3(3(4(3(3(2(x1)))))))))) 1127.91/297.10 , 5(0(2(5(4(4(0(x1))))))) -> 5(4(0(3(2(2(1(1(3(4(x1)))))))))) 1127.91/297.10 , 5(0(5(0(1(5(2(x1))))))) -> 5(3(2(3(2(4(3(2(0(2(x1)))))))))) 1127.91/297.10 , 5(0(5(5(5(4(5(x1))))))) -> 5(2(3(3(2(3(3(0(3(2(x1)))))))))) 1127.91/297.10 , 5(3(0(1(4(3(1(x1))))))) -> 3(2(2(1(2(1(0(0(3(1(x1)))))))))) 1127.91/297.10 , 5(3(5(0(1(0(1(x1))))))) -> 5(3(2(2(1(5(5(3(5(1(x1)))))))))) 1127.91/297.10 , 5(4(0(4(1(0(3(x1))))))) -> 5(3(2(2(4(4(3(2(4(3(x1)))))))))) 1127.91/297.10 , 5(4(3(0(1(5(x1)))))) -> 5(2(3(3(3(2(1(5(3(2(x1)))))))))) } 1127.91/297.10 Obligation: 1127.91/297.10 derivational complexity 1127.91/297.10 Answer: 1127.91/297.10 YES(?,O(n^1)) 1127.91/297.10 1127.91/297.10 The problem is match-bounded by 2. The enriched problem is 1127.91/297.10 compatible with the following automaton. 1127.91/297.10 { 0_0(1) -> 1 1127.91/297.10 , 0_1(1) -> 57 1127.91/297.10 , 0_1(2) -> 1 1127.91/297.10 , 0_1(2) -> 18 1127.91/297.10 , 0_1(2) -> 57 1127.91/297.10 , 0_1(2) -> 74 1127.91/297.10 , 0_1(2) -> 220 1127.91/297.10 , 0_1(11) -> 33 1127.91/297.10 , 0_1(19) -> 18 1127.91/297.10 , 0_1(26) -> 25 1127.91/297.10 , 0_1(33) -> 57 1127.91/297.10 , 0_1(38) -> 249 1127.91/297.10 , 0_1(46) -> 45 1127.91/297.10 , 0_1(48) -> 74 1127.91/297.10 , 0_1(56) -> 74 1127.91/297.10 , 0_1(57) -> 220 1127.91/297.10 , 0_1(61) -> 60 1127.91/297.10 , 0_1(62) -> 61 1127.91/297.10 , 0_1(64) -> 174 1127.91/297.10 , 0_1(70) -> 103 1127.91/297.10 , 0_1(94) -> 12 1127.91/297.10 , 0_1(99) -> 49 1127.91/297.10 , 0_1(104) -> 103 1127.91/297.10 , 0_1(129) -> 128 1127.91/297.10 , 0_1(134) -> 147 1127.91/297.10 , 0_1(135) -> 27 1127.91/297.10 , 0_1(138) -> 137 1127.91/297.10 , 0_1(158) -> 57 1127.91/297.10 , 0_1(175) -> 18 1127.91/297.10 , 0_1(186) -> 57 1127.91/297.10 , 0_1(200) -> 199 1127.91/297.10 , 0_1(204) -> 307 1127.91/297.10 , 0_1(205) -> 204 1127.91/297.10 , 0_1(208) -> 57 1127.91/297.10 , 0_1(221) -> 15 1127.91/297.10 , 0_1(224) -> 11 1127.91/297.10 , 0_1(242) -> 241 1127.91/297.10 , 0_1(249) -> 248 1127.91/297.10 , 0_1(259) -> 258 1127.91/297.10 , 0_1(261) -> 18 1127.91/297.10 , 0_1(264) -> 263 1127.91/297.10 , 0_1(287) -> 286 1127.91/297.10 , 0_1(292) -> 306 1127.91/297.10 , 0_1(294) -> 293 1127.91/297.10 , 0_2(117) -> 18 1127.91/297.10 , 0_2(224) -> 347 1127.91/297.10 , 1_0(1) -> 1 1127.91/297.10 , 1_1(1) -> 134 1127.91/297.10 , 1_1(3) -> 134 1127.91/297.10 , 1_1(7) -> 6 1127.91/297.10 , 1_1(10) -> 202 1127.91/297.10 , 1_1(11) -> 134 1127.91/297.10 , 1_1(14) -> 13 1127.91/297.10 , 1_1(17) -> 16 1127.91/297.10 , 1_1(18) -> 17 1127.91/297.10 , 1_1(19) -> 40 1127.91/297.10 , 1_1(23) -> 22 1127.91/297.10 , 1_1(26) -> 298 1127.91/297.10 , 1_1(27) -> 12 1127.91/297.10 , 1_1(30) -> 29 1127.91/297.10 , 1_1(33) -> 1 1127.91/297.10 , 1_1(33) -> 40 1127.91/297.10 , 1_1(33) -> 57 1127.91/297.10 , 1_1(33) -> 134 1127.91/297.10 , 1_1(33) -> 146 1127.91/297.10 , 1_1(33) -> 202 1127.91/297.10 , 1_1(33) -> 206 1127.91/297.10 , 1_1(33) -> 207 1127.91/297.10 , 1_1(33) -> 219 1127.91/297.10 , 1_1(33) -> 220 1127.91/297.10 , 1_1(34) -> 134 1127.91/297.10 , 1_1(40) -> 39 1127.91/297.10 , 1_1(41) -> 134 1127.91/297.10 , 1_1(42) -> 41 1127.91/297.10 , 1_1(47) -> 214 1127.91/297.10 , 1_1(48) -> 207 1127.91/297.10 , 1_1(49) -> 134 1127.91/297.10 , 1_1(56) -> 55 1127.91/297.10 , 1_1(57) -> 146 1127.91/297.10 , 1_1(64) -> 63 1127.91/297.10 , 1_1(79) -> 78 1127.91/297.10 , 1_1(80) -> 108 1127.91/297.10 , 1_1(83) -> 58 1127.91/297.10 , 1_1(89) -> 88 1127.91/297.10 , 1_1(90) -> 89 1127.91/297.10 , 1_1(95) -> 94 1127.91/297.10 , 1_1(98) -> 97 1127.91/297.10 , 1_1(103) -> 102 1127.91/297.10 , 1_1(105) -> 179 1127.91/297.10 , 1_1(109) -> 108 1127.91/297.10 , 1_1(126) -> 51 1127.91/297.10 , 1_1(133) -> 132 1127.91/297.10 , 1_1(139) -> 65 1127.91/297.10 , 1_1(143) -> 128 1127.91/297.10 , 1_1(147) -> 146 1127.91/297.10 , 1_1(150) -> 196 1127.91/297.10 , 1_1(151) -> 33 1127.91/297.10 , 1_1(167) -> 166 1127.91/297.10 , 1_1(168) -> 202 1127.91/297.10 , 1_1(174) -> 173 1127.91/297.10 , 1_1(175) -> 40 1127.91/297.10 , 1_1(181) -> 180 1127.91/297.10 , 1_1(186) -> 49 1127.91/297.10 , 1_1(196) -> 195 1127.91/297.10 , 1_1(204) -> 203 1127.91/297.10 , 1_1(207) -> 206 1127.91/297.10 , 1_1(217) -> 216 1127.91/297.10 , 1_1(218) -> 217 1127.91/297.10 , 1_1(220) -> 219 1127.91/297.10 , 1_1(236) -> 134 1127.91/297.10 , 1_1(244) -> 243 1127.91/297.10 , 1_1(246) -> 11 1127.91/297.10 , 1_1(251) -> 250 1127.91/297.10 , 1_1(253) -> 252 1127.91/297.10 , 1_1(257) -> 256 1127.91/297.10 , 1_1(272) -> 271 1127.91/297.10 , 1_1(298) -> 297 1127.91/297.10 , 1_1(307) -> 15 1127.91/297.10 , 1_1(309) -> 308 1127.91/297.10 , 1_1(318) -> 317 1127.91/297.10 , 1_2(34) -> 338 1127.91/297.10 , 1_2(332) -> 331 1127.91/297.10 , 1_2(339) -> 219 1127.91/297.10 , 1_2(340) -> 339 1127.91/297.10 , 2_0(1) -> 1 1127.91/297.10 , 2_1(1) -> 48 1127.91/297.10 , 2_1(2) -> 47 1127.91/297.10 , 2_1(3) -> 2 1127.91/297.10 , 2_1(5) -> 4 1127.91/297.10 , 2_1(9) -> 8 1127.91/297.10 , 2_1(10) -> 93 1127.91/297.10 , 2_1(11) -> 48 1127.91/297.10 , 2_1(12) -> 11 1127.91/297.10 , 2_1(13) -> 12 1127.91/297.10 , 2_1(15) -> 14 1127.91/297.10 , 2_1(18) -> 260 1127.91/297.10 , 2_1(19) -> 70 1127.91/297.10 , 2_1(24) -> 23 1127.91/297.10 , 2_1(25) -> 24 1127.91/297.10 , 2_1(29) -> 28 1127.91/297.10 , 2_1(33) -> 48 1127.91/297.10 , 2_1(34) -> 33 1127.91/297.10 , 2_1(35) -> 34 1127.91/297.10 , 2_1(38) -> 37 1127.91/297.10 , 2_1(39) -> 38 1127.91/297.10 , 2_1(40) -> 178 1127.91/297.10 , 2_1(47) -> 116 1127.91/297.10 , 2_1(48) -> 47 1127.91/297.10 , 2_1(49) -> 1 1127.91/297.10 , 2_1(49) -> 18 1127.91/297.10 , 2_1(49) -> 19 1127.91/297.10 , 2_1(49) -> 40 1127.91/297.10 , 2_1(49) -> 57 1127.91/297.10 , 2_1(49) -> 64 1127.91/297.10 , 2_1(49) -> 134 1127.91/297.10 , 2_1(49) -> 145 1127.91/297.10 , 2_1(49) -> 146 1127.91/297.10 , 2_1(49) -> 147 1127.91/297.10 , 2_1(49) -> 157 1127.91/297.10 , 2_1(49) -> 173 1127.91/297.10 , 2_1(49) -> 174 1127.91/297.10 , 2_1(49) -> 179 1127.91/297.10 , 2_1(49) -> 199 1127.91/297.10 , 2_1(49) -> 203 1127.91/297.10 , 2_1(49) -> 205 1127.91/297.10 , 2_1(49) -> 213 1127.91/297.10 , 2_1(49) -> 220 1127.91/297.10 , 2_1(49) -> 223 1127.91/297.10 , 2_1(49) -> 235 1127.91/297.10 , 2_1(54) -> 53 1127.91/297.10 , 2_1(55) -> 54 1127.91/297.10 , 2_1(57) -> 56 1127.91/297.10 , 2_1(59) -> 58 1127.91/297.10 , 2_1(60) -> 59 1127.91/297.10 , 2_1(64) -> 87 1127.91/297.10 , 2_1(66) -> 65 1127.91/297.10 , 2_1(67) -> 66 1127.91/297.10 , 2_1(69) -> 68 1127.91/297.10 , 2_1(74) -> 301 1127.91/297.10 , 2_1(75) -> 30 1127.91/297.10 , 2_1(76) -> 93 1127.91/297.10 , 2_1(77) -> 20 1127.91/297.10 , 2_1(80) -> 79 1127.91/297.10 , 2_1(82) -> 81 1127.91/297.10 , 2_1(91) -> 90 1127.91/297.10 , 2_1(92) -> 91 1127.91/297.10 , 2_1(97) -> 96 1127.91/297.10 , 2_1(101) -> 100 1127.91/297.10 , 2_1(105) -> 104 1127.91/297.10 , 2_1(108) -> 107 1127.91/297.10 , 2_1(111) -> 110 1127.91/297.10 , 2_1(112) -> 88 1127.91/297.10 , 2_1(114) -> 113 1127.91/297.10 , 2_1(115) -> 114 1127.91/297.10 , 2_1(116) -> 115 1127.91/297.10 , 2_1(127) -> 126 1127.91/297.10 , 2_1(128) -> 50 1127.91/297.10 , 2_1(134) -> 133 1127.91/297.10 , 2_1(137) -> 136 1127.91/297.10 , 2_1(138) -> 275 1127.91/297.10 , 2_1(140) -> 139 1127.91/297.10 , 2_1(142) -> 141 1127.91/297.10 , 2_1(150) -> 149 1127.91/297.10 , 2_1(151) -> 2 1127.91/297.10 , 2_1(152) -> 151 1127.91/297.10 , 2_1(154) -> 153 1127.91/297.10 , 2_1(156) -> 155 1127.91/297.10 , 2_1(159) -> 158 1127.91/297.10 , 2_1(160) -> 159 1127.91/297.10 , 2_1(163) -> 162 1127.91/297.10 , 2_1(164) -> 152 1127.91/297.10 , 2_1(166) -> 165 1127.91/297.10 , 2_1(168) -> 2 1127.91/297.10 , 2_1(170) -> 169 1127.91/297.10 , 2_1(171) -> 170 1127.91/297.10 , 2_1(175) -> 104 1127.91/297.10 , 2_1(179) -> 178 1127.91/297.10 , 2_1(182) -> 181 1127.91/297.10 , 2_1(184) -> 183 1127.91/297.10 , 2_1(185) -> 184 1127.91/297.10 , 2_1(187) -> 186 1127.91/297.10 , 2_1(192) -> 48 1127.91/297.10 , 2_1(195) -> 194 1127.91/297.10 , 2_1(199) -> 198 1127.91/297.10 , 2_1(202) -> 48 1127.91/297.10 , 2_1(203) -> 128 1127.91/297.10 , 2_1(210) -> 209 1127.91/297.10 , 2_1(211) -> 210 1127.91/297.10 , 2_1(213) -> 212 1127.91/297.10 , 2_1(216) -> 215 1127.91/297.10 , 2_1(217) -> 12 1127.91/297.10 , 2_1(219) -> 218 1127.91/297.10 , 2_1(226) -> 225 1127.91/297.10 , 2_1(231) -> 230 1127.91/297.10 , 2_1(232) -> 231 1127.91/297.10 , 2_1(233) -> 232 1127.91/297.10 , 2_1(238) -> 237 1127.91/297.10 , 2_1(241) -> 49 1127.91/297.10 , 2_1(247) -> 246 1127.91/297.10 , 2_1(248) -> 247 1127.91/297.10 , 2_1(252) -> 251 1127.91/297.10 , 2_1(255) -> 254 1127.91/297.10 , 2_1(261) -> 48 1127.91/297.10 , 2_1(263) -> 262 1127.91/297.10 , 2_1(265) -> 264 1127.91/297.10 , 2_1(266) -> 265 1127.91/297.10 , 2_1(267) -> 266 1127.91/297.11 , 2_1(268) -> 227 1127.91/297.11 , 2_1(269) -> 268 1127.91/297.11 , 2_1(277) -> 276 1127.91/297.11 , 2_1(279) -> 278 1127.91/297.11 , 2_1(280) -> 279 1127.91/297.11 , 2_1(281) -> 261 1127.91/297.11 , 2_1(284) -> 283 1127.91/297.11 , 2_1(285) -> 284 1127.91/297.11 , 2_1(296) -> 295 1127.91/297.11 , 2_1(297) -> 296 1127.91/297.11 , 2_1(299) -> 288 1127.91/297.11 , 2_1(304) -> 303 1127.91/297.11 , 2_1(307) -> 59 1127.91/297.11 , 2_1(308) -> 263 1127.91/297.11 , 2_1(313) -> 153 1127.91/297.11 , 2_1(315) -> 314 1127.91/297.11 , 2_1(317) -> 316 1127.91/297.11 , 2_2(90) -> 125 1127.91/297.11 , 2_2(119) -> 118 1127.91/297.11 , 2_2(121) -> 120 1127.91/297.11 , 2_2(122) -> 121 1127.91/297.11 , 2_2(123) -> 122 1127.91/297.11 , 2_2(124) -> 123 1127.91/297.11 , 2_2(125) -> 124 1127.91/297.11 , 2_2(319) -> 147 1127.91/297.11 , 2_2(322) -> 321 1127.91/297.11 , 2_2(323) -> 322 1127.91/297.11 , 2_2(325) -> 324 1127.91/297.11 , 2_2(327) -> 326 1127.91/297.11 , 2_2(331) -> 330 1127.91/297.11 , 2_2(336) -> 335 1127.91/297.11 , 2_2(338) -> 337 1127.91/297.11 , 2_2(341) -> 340 1127.91/297.11 , 2_2(343) -> 342 1127.91/297.11 , 2_2(345) -> 344 1127.91/297.11 , 2_2(352) -> 57 1127.91/297.11 , 2_2(352) -> 147 1127.91/297.11 , 2_2(352) -> 220 1127.91/297.11 , 2_2(355) -> 354 1127.91/297.11 , 2_2(356) -> 355 1127.91/297.11 , 2_2(358) -> 357 1127.91/297.11 , 2_2(360) -> 359 1127.91/297.11 , 3_0(1) -> 1 1127.91/297.11 , 3_1(1) -> 64 1127.91/297.11 , 3_1(3) -> 64 1127.91/297.11 , 3_1(4) -> 3 1127.91/297.11 , 3_1(10) -> 9 1127.91/297.11 , 3_1(11) -> 1 1127.91/297.11 , 3_1(11) -> 10 1127.91/297.11 , 3_1(11) -> 19 1127.91/297.11 , 3_1(11) -> 30 1127.91/297.11 , 3_1(11) -> 40 1127.91/297.11 , 3_1(11) -> 57 1127.91/297.11 , 3_1(11) -> 63 1127.91/297.11 , 3_1(11) -> 74 1127.91/297.11 , 3_1(11) -> 76 1127.91/297.11 , 3_1(11) -> 103 1127.91/297.11 , 3_1(11) -> 134 1127.91/297.11 , 3_1(11) -> 147 1127.91/297.11 , 3_1(11) -> 156 1127.91/297.11 , 3_1(11) -> 175 1127.91/297.11 , 3_1(11) -> 220 1127.91/297.11 , 3_1(11) -> 235 1127.91/297.11 , 3_1(11) -> 286 1127.91/297.11 , 3_1(11) -> 315 1127.91/297.11 , 3_1(16) -> 205 1127.91/297.11 , 3_1(18) -> 142 1127.91/297.11 , 3_1(19) -> 26 1127.91/297.11 , 3_1(26) -> 138 1127.91/297.11 , 3_1(28) -> 27 1127.91/297.11 , 3_1(32) -> 31 1127.91/297.11 , 3_1(33) -> 64 1127.91/297.11 , 3_1(36) -> 35 1127.91/297.11 , 3_1(41) -> 11 1127.91/297.11 , 3_1(43) -> 42 1127.91/297.11 , 3_1(44) -> 43 1127.91/297.11 , 3_1(47) -> 46 1127.91/297.11 , 3_1(48) -> 292 1127.91/297.11 , 3_1(49) -> 64 1127.91/297.11 , 3_1(50) -> 49 1127.91/297.11 , 3_1(52) -> 51 1127.91/297.11 , 3_1(57) -> 157 1127.91/297.11 , 3_1(58) -> 12 1127.91/297.11 , 3_1(63) -> 62 1127.91/297.11 , 3_1(64) -> 82 1127.91/297.11 , 3_1(65) -> 50 1127.91/297.11 , 3_1(68) -> 67 1127.91/297.11 , 3_1(72) -> 71 1127.91/297.11 , 3_1(73) -> 72 1127.91/297.11 , 3_1(74) -> 73 1127.91/297.11 , 3_1(78) -> 77 1127.91/297.11 , 3_1(81) -> 80 1127.91/297.11 , 3_1(82) -> 111 1127.91/297.11 , 3_1(84) -> 83 1127.91/297.11 , 3_1(93) -> 92 1127.91/297.11 , 3_1(96) -> 95 1127.91/297.11 , 3_1(102) -> 101 1127.91/297.11 , 3_1(103) -> 127 1127.91/297.11 , 3_1(104) -> 313 1127.91/297.11 , 3_1(110) -> 109 1127.91/297.11 , 3_1(113) -> 112 1127.91/297.11 , 3_1(116) -> 245 1127.91/297.11 , 3_1(132) -> 131 1127.91/297.11 , 3_1(133) -> 150 1127.91/297.11 , 3_1(134) -> 205 1127.91/297.11 , 3_1(141) -> 140 1127.91/297.11 , 3_1(144) -> 143 1127.91/297.11 , 3_1(146) -> 191 1127.91/297.11 , 3_1(148) -> 28 1127.91/297.11 , 3_1(151) -> 64 1127.91/297.11 , 3_1(153) -> 152 1127.91/297.11 , 3_1(155) -> 154 1127.91/297.11 , 3_1(157) -> 72 1127.91/297.11 , 3_1(162) -> 161 1127.91/297.11 , 3_1(165) -> 164 1127.91/297.11 , 3_1(168) -> 33 1127.91/297.11 , 3_1(169) -> 168 1127.91/297.11 , 3_1(172) -> 171 1127.91/297.11 , 3_1(173) -> 240 1127.91/297.11 , 3_1(175) -> 26 1127.91/297.11 , 3_1(177) -> 176 1127.91/297.11 , 3_1(178) -> 177 1127.91/297.11 , 3_1(181) -> 64 1127.91/297.11 , 3_1(183) -> 182 1127.91/297.11 , 3_1(185) -> 311 1127.91/297.11 , 3_1(189) -> 188 1127.91/297.11 , 3_1(190) -> 189 1127.91/297.11 , 3_1(192) -> 26 1127.91/297.11 , 3_1(194) -> 193 1127.91/297.11 , 3_1(197) -> 186 1127.91/297.11 , 3_1(198) -> 197 1127.91/297.11 , 3_1(202) -> 201 1127.91/297.11 , 3_1(206) -> 205 1127.91/297.11 , 3_1(207) -> 131 1127.91/297.11 , 3_1(208) -> 64 1127.91/297.11 , 3_1(212) -> 211 1127.91/297.11 , 3_1(215) -> 209 1127.91/297.11 , 3_1(223) -> 280 1127.91/297.11 , 3_1(225) -> 224 1127.91/297.11 , 3_1(227) -> 226 1127.91/297.11 , 3_1(228) -> 227 1127.91/297.11 , 3_1(234) -> 233 1127.91/297.11 , 3_1(236) -> 208 1127.91/297.11 , 3_1(237) -> 236 1127.91/297.11 , 3_1(239) -> 238 1127.91/297.11 , 3_1(243) -> 242 1127.91/297.11 , 3_1(251) -> 64 1127.91/297.11 , 3_1(254) -> 253 1127.91/297.11 , 3_1(258) -> 257 1127.91/297.11 , 3_1(260) -> 259 1127.91/297.11 , 3_1(261) -> 26 1127.91/297.11 , 3_1(262) -> 261 1127.91/297.11 , 3_1(270) -> 31 1127.91/297.11 , 3_1(273) -> 272 1127.91/297.11 , 3_1(278) -> 277 1127.91/297.11 , 3_1(283) -> 282 1127.91/297.11 , 3_1(286) -> 285 1127.91/297.11 , 3_1(288) -> 263 1127.91/297.11 , 3_1(289) -> 288 1127.91/297.11 , 3_1(290) -> 289 1127.91/297.11 , 3_1(292) -> 291 1127.91/297.11 , 3_1(295) -> 294 1127.91/297.11 , 3_1(301) -> 300 1127.91/297.11 , 3_1(302) -> 281 1127.91/297.11 , 3_1(303) -> 302 1127.91/297.11 , 3_1(305) -> 304 1127.91/297.11 , 3_1(306) -> 305 1127.91/297.11 , 3_1(314) -> 313 1127.91/297.11 , 3_1(316) -> 303 1127.91/297.11 , 3_2(120) -> 119 1127.91/297.11 , 3_2(320) -> 319 1127.91/297.11 , 3_2(321) -> 320 1127.91/297.11 , 3_2(324) -> 323 1127.91/297.11 , 3_2(330) -> 286 1127.91/297.11 , 3_2(333) -> 332 1127.91/297.11 , 3_2(334) -> 333 1127.91/297.11 , 3_2(337) -> 336 1127.91/297.11 , 3_2(342) -> 341 1127.91/297.11 , 3_2(344) -> 343 1127.91/297.11 , 3_2(347) -> 346 1127.91/297.11 , 3_2(353) -> 352 1127.91/297.11 , 3_2(354) -> 353 1127.91/297.11 , 3_2(357) -> 356 1127.91/297.11 , 4_0(1) -> 1 1127.91/297.11 , 4_1(1) -> 19 1127.91/297.11 , 4_1(2) -> 19 1127.91/297.11 , 4_1(6) -> 5 1127.91/297.11 , 4_1(9) -> 175 1127.91/297.11 , 4_1(11) -> 175 1127.91/297.11 , 4_1(16) -> 15 1127.91/297.11 , 4_1(19) -> 105 1127.91/297.11 , 4_1(20) -> 11 1127.91/297.11 , 4_1(21) -> 20 1127.91/297.11 , 4_1(22) -> 21 1127.91/297.11 , 4_1(26) -> 255 1127.91/297.11 , 4_1(31) -> 30 1127.91/297.11 , 4_1(46) -> 244 1127.91/297.11 , 4_1(53) -> 52 1127.91/297.11 , 4_1(57) -> 235 1127.91/297.11 , 4_1(64) -> 315 1127.91/297.11 , 4_1(70) -> 69 1127.91/297.11 , 4_1(71) -> 13 1127.91/297.11 , 4_1(85) -> 84 1127.91/297.11 , 4_1(86) -> 85 1127.91/297.11 , 4_1(88) -> 2 1127.91/297.11 , 4_1(104) -> 69 1127.91/297.11 , 4_1(105) -> 163 1127.91/297.11 , 4_1(131) -> 130 1127.91/297.11 , 4_1(134) -> 223 1127.91/297.11 , 4_1(145) -> 144 1127.91/297.11 , 4_1(146) -> 145 1127.91/297.11 , 4_1(149) -> 148 1127.91/297.11 , 4_1(157) -> 156 1127.91/297.11 , 4_1(158) -> 49 1127.91/297.11 , 4_1(175) -> 222 1127.91/297.11 , 4_1(188) -> 187 1127.91/297.11 , 4_1(193) -> 192 1127.91/297.11 , 4_1(202) -> 229 1127.91/297.11 , 4_1(207) -> 213 1127.91/297.11 , 4_1(208) -> 1 1127.91/297.11 , 4_1(208) -> 19 1127.91/297.11 , 4_1(208) -> 235 1127.91/297.11 , 4_1(209) -> 208 1127.91/297.11 , 4_1(214) -> 213 1127.91/297.11 , 4_1(223) -> 222 1127.91/297.11 , 4_1(224) -> 19 1127.91/297.11 , 4_1(235) -> 234 1127.91/297.11 , 4_1(240) -> 239 1127.91/297.11 , 4_1(245) -> 244 1127.91/297.11 , 4_1(259) -> 299 1127.91/297.11 , 4_1(267) -> 269 1127.91/297.11 , 4_1(269) -> 84 1127.91/297.11 , 4_1(270) -> 269 1127.91/297.11 , 4_1(274) -> 273 1127.91/297.11 , 4_1(276) -> 186 1127.91/297.11 , 4_1(287) -> 15 1127.91/297.11 , 4_1(291) -> 290 1127.91/297.11 , 4_1(293) -> 261 1127.91/297.11 , 4_1(300) -> 299 1127.91/297.11 , 4_1(312) -> 308 1127.91/297.11 , 4_1(313) -> 312 1127.91/297.11 , 4_2(2) -> 327 1127.91/297.11 , 4_2(11) -> 360 1127.91/297.11 , 4_2(99) -> 327 1127.91/297.11 , 4_2(118) -> 117 1127.91/297.11 , 4_2(224) -> 327 1127.91/297.11 , 4_2(326) -> 325 1127.91/297.11 , 4_2(335) -> 334 1127.91/297.11 , 4_2(346) -> 345 1127.91/297.11 , 4_2(359) -> 358 1127.91/297.11 , 5_0(1) -> 1 1127.91/297.11 , 5_1(1) -> 10 1127.91/297.11 , 5_1(2) -> 270 1127.91/297.11 , 5_1(3) -> 10 1127.91/297.11 , 5_1(8) -> 7 1127.91/297.11 , 5_1(10) -> 32 1127.91/297.11 , 5_1(11) -> 185 1127.91/297.11 , 5_1(19) -> 287 1127.91/297.11 , 5_1(26) -> 98 1127.91/297.11 , 5_1(37) -> 36 1127.91/297.11 , 5_1(40) -> 267 1127.91/297.11 , 5_1(45) -> 44 1127.91/297.11 , 5_1(47) -> 167 1127.91/297.11 , 5_1(48) -> 270 1127.91/297.11 , 5_1(49) -> 10 1127.91/297.11 , 5_1(51) -> 50 1127.91/297.11 , 5_1(64) -> 76 1127.91/297.11 , 5_1(76) -> 75 1127.91/297.11 , 5_1(87) -> 86 1127.91/297.11 , 5_1(100) -> 99 1127.91/297.11 , 5_1(106) -> 2 1127.91/297.11 , 5_1(107) -> 106 1127.91/297.11 , 5_1(130) -> 129 1127.91/297.11 , 5_1(133) -> 167 1127.91/297.11 , 5_1(134) -> 185 1127.91/297.11 , 5_1(136) -> 135 1127.91/297.11 , 5_1(151) -> 10 1127.91/297.11 , 5_1(161) -> 160 1127.91/297.11 , 5_1(168) -> 10 1127.91/297.11 , 5_1(173) -> 172 1127.91/297.11 , 5_1(175) -> 16 1127.91/297.11 , 5_1(176) -> 13 1127.91/297.11 , 5_1(180) -> 168 1127.91/297.11 , 5_1(191) -> 190 1127.91/297.11 , 5_1(192) -> 33 1127.91/297.11 , 5_1(201) -> 200 1127.91/297.11 , 5_1(205) -> 200 1127.91/297.11 , 5_1(208) -> 10 1127.91/297.11 , 5_1(222) -> 221 1127.91/297.11 , 5_1(229) -> 228 1127.91/297.11 , 5_1(230) -> 41 1127.91/297.11 , 5_1(250) -> 49 1127.91/297.11 , 5_1(256) -> 158 1127.91/297.11 , 5_1(261) -> 1 1127.91/297.11 , 5_1(261) -> 10 1127.91/297.11 , 5_1(261) -> 19 1127.91/297.11 , 5_1(261) -> 76 1127.91/297.11 , 5_1(261) -> 223 1127.91/297.11 , 5_1(261) -> 287 1127.91/297.11 , 5_1(271) -> 11 1127.91/297.11 , 5_1(275) -> 274 1127.91/297.11 , 5_1(282) -> 281 1127.91/297.11 , 5_1(292) -> 318 1127.91/297.11 , 5_1(310) -> 309 1127.91/297.11 , 5_1(311) -> 310 } 1127.91/297.11 1127.91/297.11 Hurray, we answered YES(?,O(n^1)) 1128.72/297.97 EOF