YES(?,O(n^1)) 1119.31/297.09 YES(?,O(n^1)) 1119.31/297.09 1119.31/297.09 We are left with following problem, upon which TcT provides the 1119.31/297.09 certificate YES(?,O(n^1)). 1119.31/297.09 1119.31/297.09 Strict Trs: 1119.31/297.09 { 3(3(3(0(1(0(x1)))))) -> 3(2(3(2(0(0(3(3(5(0(x1)))))))))) 1119.31/297.09 , 3(0(3(1(5(x1))))) -> 0(4(5(3(1(5(3(5(3(5(x1)))))))))) 1119.31/297.09 , 3(0(3(2(0(1(x1)))))) -> 0(2(0(0(2(3(2(3(5(5(x1)))))))))) 1119.31/297.09 , 3(0(1(3(0(2(1(x1))))))) -> 3(5(4(2(2(2(0(4(3(2(x1)))))))))) 1119.31/297.09 , 3(0(1(1(1(5(4(x1))))))) -> 3(0(3(0(0(3(2(5(4(2(x1)))))))))) 1119.31/297.09 , 3(0(1(5(x1)))) -> 0(0(5(2(3(2(2(4(3(5(x1)))))))))) 1119.31/297.09 , 3(0(1(5(3(4(1(x1))))))) -> 3(1(2(3(3(2(4(2(3(1(x1)))))))))) 1119.31/297.09 , 3(0(4(1(0(1(5(x1))))))) -> 4(5(1(3(3(4(2(2(2(2(x1)))))))))) 1119.31/297.09 , 3(5(0(3(3(x1))))) -> 3(5(4(2(5(2(4(5(2(3(x1)))))))))) 1119.31/297.09 , 3(4(0(1(x1)))) -> 2(4(2(2(5(4(2(5(2(3(x1)))))))))) 1119.31/297.09 , 3(4(1(5(5(x1))))) -> 3(5(1(0(2(4(5(2(5(2(x1)))))))))) 1119.31/297.09 , 3(4(1(5(5(5(4(x1))))))) -> 3(0(4(0(4(3(5(4(3(3(x1)))))))))) 1119.31/297.09 , 3(4(4(0(5(1(0(x1))))))) -> 2(2(0(5(3(3(5(3(1(0(x1)))))))))) 1119.31/297.09 , 0(3(3(1(1(x1))))) -> 0(0(0(3(4(5(4(3(5(1(x1)))))))))) 1119.31/297.09 , 0(0(3(0(1(1(x1)))))) -> 2(0(4(5(2(2(0(3(1(1(x1)))))))))) 1119.31/297.09 , 0(1(0(2(0(5(5(x1))))))) -> 2(0(4(5(1(0(4(2(5(4(x1)))))))))) 1119.31/297.09 , 0(1(1(0(1(0(5(x1))))))) -> 0(4(2(2(1(2(4(5(1(1(x1)))))))))) 1119.31/297.09 , 0(4(4(0(1(4(x1)))))) -> 4(3(3(5(5(5(2(4(2(3(x1)))))))))) 1119.31/297.09 , 1(3(1(0(2(5(3(x1))))))) -> 1(2(5(2(2(3(5(1(2(4(x1)))))))))) 1119.31/297.09 , 1(0(1(2(3(1(x1)))))) -> 1(4(4(5(2(2(0(2(3(5(x1)))))))))) 1119.31/297.09 , 1(0(4(4(0(1(x1)))))) -> 1(0(0(0(4(5(1(2(0(3(x1)))))))))) 1119.31/297.09 , 1(5(3(0(1(4(4(x1))))))) -> 5(5(0(0(3(3(3(5(4(4(x1)))))))))) 1119.31/297.09 , 1(5(1(3(3(3(0(x1))))))) -> 4(0(4(5(2(3(5(5(2(0(x1)))))))))) 1119.31/297.09 , 1(5(1(4(4(4(4(x1))))))) -> 1(1(4(0(4(4(5(2(3(4(x1)))))))))) 1119.31/297.09 , 1(5(5(5(4(x1))))) -> 1(0(4(5(3(2(5(0(0(4(x1)))))))))) 1119.31/297.09 , 1(5(2(4(1(5(x1)))))) -> 1(3(3(2(5(4(3(5(1(4(x1)))))))))) 1119.31/297.09 , 1(4(3(1(5(0(5(x1))))))) -> 5(1(2(3(5(0(2(4(5(2(x1)))))))))) 1119.31/297.09 , 1(4(0(5(0(1(3(x1))))))) -> 1(1(0(2(4(5(2(1(1(3(x1)))))))))) 1119.31/297.09 , 5(5(1(5(3(0(x1)))))) -> 5(2(3(2(4(4(3(2(2(0(x1)))))))))) 1119.31/297.09 , 5(5(5(1(2(4(0(x1))))))) -> 5(2(3(4(2(4(5(3(3(0(x1)))))))))) 1119.31/297.09 , 5(4(0(2(1(x1))))) -> 0(2(4(3(5(1(2(5(2(5(x1)))))))))) 1119.31/297.09 , 5(4(1(5(0(1(4(x1))))))) -> 5(4(4(2(2(5(1(0(0(4(x1)))))))))) 1119.31/297.09 , 2(0(1(5(1(0(5(x1))))))) -> 2(3(5(3(1(4(1(0(4(1(x1)))))))))) 1119.31/297.09 , 2(1(3(0(3(1(4(x1))))))) -> 3(3(5(0(0(0(0(2(4(3(x1)))))))))) 1119.31/297.09 , 2(5(5(4(5(0(5(x1))))))) -> 5(5(3(4(2(5(2(2(3(5(x1)))))))))) 1119.31/297.09 , 2(2(5(4(1(4(4(x1))))))) -> 2(3(5(2(0(2(2(2(5(4(x1)))))))))) 1119.31/297.09 , 2(4(4(0(1(0(x1)))))) -> 3(4(2(0(4(3(5(5(5(0(x1)))))))))) 1119.31/297.09 , 4(3(0(1(4(0(1(x1))))))) -> 1(4(2(3(3(5(0(4(1(3(x1)))))))))) 1119.31/297.09 , 4(3(0(2(1(5(x1)))))) -> 5(4(1(2(1(1(2(3(5(5(x1)))))))))) 1119.31/297.09 , 4(3(0(2(1(2(1(x1))))))) -> 4(2(4(5(3(0(4(3(3(1(x1)))))))))) 1119.31/297.09 , 4(0(3(1(4(0(3(x1))))))) -> 5(0(2(0(0(4(3(1(0(2(x1)))))))))) 1119.31/297.09 , 4(0(1(5(0(5(5(x1))))))) -> 2(4(0(4(5(1(1(3(5(4(x1)))))))))) 1119.31/297.09 , 4(0(4(1(1(1(x1)))))) -> 4(4(5(4(5(5(4(1(2(2(x1)))))))))) 1119.31/297.09 , 4(1(0(3(5(1(5(x1))))))) -> 2(2(1(5(0(4(5(2(2(2(x1)))))))))) 1119.31/297.09 , 4(1(0(5(1(3(3(x1))))))) -> 4(1(1(2(2(3(2(3(3(2(x1)))))))))) 1119.31/297.09 , 4(1(5(5(4(4(0(x1))))))) -> 4(5(0(2(2(3(4(4(2(0(x1)))))))))) 1119.31/297.09 , 4(1(5(4(0(2(5(x1))))))) -> 4(1(3(3(4(1(1(1(1(1(x1)))))))))) 1119.31/297.09 , 4(5(1(0(5(5(x1)))))) -> 4(4(2(3(5(1(0(4(5(5(x1)))))))))) 1119.31/297.09 , 4(4(0(1(1(0(1(x1))))))) -> 0(0(3(1(4(3(3(5(5(5(x1)))))))))) 1119.31/297.09 , 4(4(1(2(4(4(1(x1))))))) -> 4(4(0(0(5(1(3(2(1(2(x1)))))))))) } 1119.31/297.09 Obligation: 1119.31/297.09 derivational complexity 1119.31/297.09 Answer: 1119.31/297.09 YES(?,O(n^1)) 1119.31/297.09 1119.31/297.09 The problem is match-bounded by 2. The enriched problem is 1119.31/297.09 compatible with the following automaton. 1119.31/297.09 { 3_0(1) -> 1 1119.31/297.09 , 3_1(1) -> 68 1119.31/297.09 , 3_1(2) -> 1 1119.31/297.09 , 3_1(2) -> 8 1119.31/297.09 , 3_1(2) -> 18 1119.31/297.09 , 3_1(2) -> 34 1119.31/297.09 , 3_1(2) -> 68 1119.31/297.09 , 3_1(2) -> 84 1119.31/297.09 , 3_1(2) -> 128 1119.31/297.09 , 3_1(2) -> 163 1119.31/297.09 , 3_1(2) -> 197 1119.31/297.09 , 3_1(4) -> 3 1119.31/297.09 , 3_1(8) -> 7 1119.31/297.09 , 3_1(9) -> 8 1119.31/297.09 , 3_1(10) -> 197 1119.31/297.09 , 3_1(14) -> 13 1119.31/297.09 , 3_1(17) -> 16 1119.31/297.09 , 3_1(19) -> 18 1119.31/297.09 , 3_1(24) -> 23 1119.31/297.09 , 3_1(26) -> 25 1119.31/297.09 , 3_1(33) -> 276 1119.31/297.09 , 3_1(34) -> 33 1119.31/297.09 , 3_1(36) -> 35 1119.31/297.09 , 3_1(39) -> 38 1119.31/297.09 , 3_1(45) -> 44 1119.31/297.09 , 3_1(50) -> 49 1119.31/297.09 , 3_1(51) -> 50 1119.31/297.09 , 3_1(54) -> 249 1119.31/297.09 , 3_1(55) -> 54 1119.31/297.09 , 3_1(56) -> 68 1119.31/297.09 , 3_1(59) -> 58 1119.31/297.09 , 3_1(60) -> 59 1119.31/297.09 , 3_1(68) -> 84 1119.31/297.09 , 3_1(70) -> 2 1119.31/297.09 , 3_1(82) -> 81 1119.31/297.09 , 3_1(88) -> 87 1119.31/297.09 , 3_1(89) -> 88 1119.31/297.09 , 3_1(91) -> 90 1119.31/297.09 , 3_1(93) -> 92 1119.31/297.09 , 3_1(97) -> 96 1119.31/297.09 , 3_1(104) -> 103 1119.31/297.09 , 3_1(108) -> 147 1119.31/297.09 , 3_1(109) -> 163 1119.31/297.09 , 3_1(115) -> 56 1119.31/297.09 , 3_1(116) -> 115 1119.31/297.09 , 3_1(119) -> 50 1119.31/297.09 , 3_1(121) -> 68 1119.31/297.09 , 3_1(126) -> 125 1119.31/297.09 , 3_1(129) -> 68 1119.31/297.09 , 3_1(146) -> 145 1119.31/297.09 , 3_1(147) -> 146 1119.31/297.09 , 3_1(148) -> 147 1119.31/297.09 , 3_1(154) -> 153 1119.31/297.09 , 3_1(156) -> 33 1119.31/297.09 , 3_1(166) -> 165 1119.31/297.09 , 3_1(170) -> 121 1119.31/297.09 , 3_1(171) -> 170 1119.31/297.09 , 3_1(175) -> 174 1119.31/297.09 , 3_1(179) -> 178 1119.31/297.09 , 3_1(188) -> 187 1119.31/297.09 , 3_1(192) -> 191 1119.31/297.09 , 3_1(197) -> 196 1119.31/297.09 , 3_1(199) -> 198 1119.31/297.09 , 3_1(204) -> 2 1119.31/297.09 , 3_1(209) -> 69 1119.31/297.09 , 3_1(211) -> 210 1119.31/297.09 , 3_1(216) -> 2 1119.31/297.09 , 3_1(223) -> 143 1119.31/297.09 , 3_1(233) -> 294 1119.31/297.09 , 3_1(234) -> 233 1119.31/297.09 , 3_1(235) -> 25 1119.31/297.09 , 3_1(237) -> 236 1119.31/297.09 , 3_1(238) -> 237 1119.31/297.09 , 3_1(247) -> 246 1119.31/297.09 , 3_1(255) -> 254 1119.31/297.09 , 3_1(275) -> 274 1119.31/297.09 , 3_1(280) -> 279 1119.31/297.09 , 3_1(282) -> 271 1119.31/297.09 , 3_1(283) -> 282 1119.31/297.09 , 3_1(288) -> 287 1119.31/297.09 , 3_1(292) -> 42 1119.31/297.09 , 3_1(295) -> 294 1119.31/297.09 , 3_1(296) -> 295 1119.31/297.09 , 3_1(301) -> 300 1119.31/297.09 , 3_2(70) -> 317 1119.31/297.09 , 3_2(171) -> 317 1119.31/297.09 , 3_2(204) -> 317 1119.31/297.09 , 3_2(216) -> 317 1119.31/297.09 , 3_2(309) -> 8 1119.31/297.09 , 3_2(330) -> 329 1119.31/297.09 , 3_2(334) -> 333 1119.31/297.09 , 3_2(337) -> 336 1119.31/297.09 , 0_0(1) -> 1 1119.31/297.09 , 0_1(1) -> 10 1119.31/297.09 , 0_1(6) -> 5 1119.31/297.09 , 0_1(7) -> 6 1119.31/297.09 , 0_1(10) -> 168 1119.31/297.09 , 0_1(11) -> 1 1119.31/297.09 , 0_1(11) -> 10 1119.31/297.09 , 0_1(11) -> 19 1119.31/297.09 , 0_1(11) -> 68 1119.31/297.09 , 0_1(11) -> 108 1119.31/297.09 , 0_1(11) -> 109 1119.31/297.09 , 0_1(11) -> 141 1119.31/297.09 , 0_1(11) -> 144 1119.31/297.09 , 0_1(11) -> 149 1119.31/297.09 , 0_1(11) -> 197 1119.31/297.09 , 0_1(21) -> 20 1119.31/297.09 , 0_1(22) -> 21 1119.31/297.09 , 0_1(32) -> 31 1119.31/297.09 , 0_1(34) -> 256 1119.31/297.09 , 0_1(35) -> 2 1119.31/297.09 , 0_1(37) -> 36 1119.31/297.09 , 0_1(38) -> 37 1119.31/297.09 , 0_1(42) -> 11 1119.31/297.09 , 0_1(64) -> 180 1119.31/297.09 , 0_1(68) -> 141 1119.31/297.09 , 0_1(76) -> 75 1119.31/297.09 , 0_1(80) -> 79 1119.31/297.09 , 0_1(84) -> 144 1119.31/297.09 , 0_1(86) -> 85 1119.31/297.09 , 0_1(92) -> 42 1119.31/297.09 , 0_1(98) -> 69 1119.31/297.09 , 0_1(103) -> 102 1119.31/297.09 , 0_1(106) -> 105 1119.31/297.09 , 0_1(109) -> 169 1119.31/297.09 , 0_1(121) -> 10 1119.31/297.09 , 0_1(134) -> 133 1119.31/297.09 , 0_1(135) -> 121 1119.31/297.09 , 0_1(136) -> 135 1119.31/297.09 , 0_1(137) -> 136 1119.31/297.09 , 0_1(142) -> 10 1119.31/297.09 , 0_1(144) -> 143 1119.31/297.09 , 0_1(145) -> 144 1119.31/297.09 , 0_1(150) -> 56 1119.31/297.09 , 0_1(156) -> 256 1119.31/297.09 , 0_1(159) -> 158 1119.31/297.09 , 0_1(169) -> 168 1119.31/297.09 , 0_1(181) -> 157 1119.31/297.09 , 0_1(215) -> 214 1119.31/297.09 , 0_1(218) -> 217 1119.31/297.09 , 0_1(219) -> 218 1119.31/297.09 , 0_1(220) -> 219 1119.31/297.09 , 0_1(221) -> 220 1119.31/297.09 , 0_1(228) -> 227 1119.31/297.09 , 0_1(232) -> 231 1119.31/297.09 , 0_1(240) -> 239 1119.31/297.09 , 0_1(248) -> 247 1119.31/297.09 , 0_1(250) -> 142 1119.31/297.09 , 0_1(252) -> 251 1119.31/297.09 , 0_1(253) -> 252 1119.31/297.09 , 0_1(257) -> 70 1119.31/297.09 , 0_1(269) -> 268 1119.31/297.09 , 0_1(277) -> 57 1119.31/297.09 , 0_1(291) -> 290 1119.31/297.09 , 0_1(297) -> 261 1119.31/297.09 , 0_1(298) -> 297 1119.31/297.09 , 0_2(327) -> 144 1119.31/297.09 , 0_2(328) -> 327 1119.31/297.09 , 0_2(329) -> 328 1119.31/297.09 , 0_2(340) -> 339 1119.31/297.09 , 1_0(1) -> 1 1119.31/297.09 , 1_1(1) -> 55 1119.31/297.09 , 1_1(10) -> 91 1119.31/297.09 , 1_1(15) -> 14 1119.31/297.09 , 1_1(24) -> 243 1119.31/297.09 , 1_1(34) -> 302 1119.31/297.09 , 1_1(48) -> 2 1119.31/297.09 , 1_1(55) -> 104 1119.31/297.09 , 1_1(58) -> 57 1119.31/297.09 , 1_1(63) -> 266 1119.31/297.09 , 1_1(68) -> 186 1119.31/297.09 , 1_1(75) -> 27 1119.31/297.09 , 1_1(104) -> 286 1119.31/297.09 , 1_1(105) -> 100 1119.31/297.09 , 1_1(109) -> 176 1119.31/297.09 , 1_1(112) -> 111 1119.31/297.09 , 1_1(121) -> 1 1119.31/297.09 , 1_1(121) -> 55 1119.31/297.09 , 1_1(121) -> 91 1119.31/297.09 , 1_1(121) -> 109 1119.31/297.09 , 1_1(121) -> 176 1119.31/297.09 , 1_1(121) -> 186 1119.31/297.09 , 1_1(121) -> 222 1119.31/297.09 , 1_1(128) -> 127 1119.31/297.09 , 1_1(140) -> 139 1119.31/297.09 , 1_1(142) -> 55 1119.31/297.09 , 1_1(147) -> 260 1119.31/297.09 , 1_1(157) -> 121 1119.31/297.09 , 1_1(168) -> 208 1119.31/297.09 , 1_1(177) -> 142 1119.31/297.09 , 1_1(186) -> 185 1119.31/297.09 , 1_1(201) -> 200 1119.31/297.09 , 1_1(212) -> 211 1119.31/297.09 , 1_1(214) -> 213 1119.31/297.09 , 1_1(241) -> 204 1119.31/297.09 , 1_1(243) -> 242 1119.31/297.09 , 1_1(256) -> 255 1119.31/297.09 , 1_1(260) -> 259 1119.31/297.09 , 1_1(267) -> 85 1119.31/297.09 , 1_1(271) -> 56 1119.31/297.09 , 1_1(272) -> 271 1119.31/297.09 , 1_1(285) -> 284 1119.31/297.09 , 1_1(286) -> 285 1119.31/297.09 , 1_1(290) -> 289 1119.31/297.09 , 1_1(293) -> 292 1119.31/297.09 , 1_1(300) -> 299 1119.31/297.09 , 1_2(157) -> 335 1119.31/297.09 , 1_2(272) -> 335 1119.31/297.09 , 5_0(1) -> 1 1119.31/297.09 , 5_1(1) -> 19 1119.31/297.09 , 5_1(2) -> 235 1119.31/297.09 , 5_1(9) -> 235 1119.31/297.09 , 5_1(10) -> 9 1119.31/297.09 , 5_1(13) -> 12 1119.31/297.09 , 5_1(16) -> 15 1119.31/297.09 , 5_1(18) -> 17 1119.31/297.09 , 5_1(19) -> 26 1119.31/297.09 , 5_1(26) -> 296 1119.31/297.09 , 5_1(27) -> 2 1119.31/297.09 , 5_1(34) -> 66 1119.31/297.09 , 5_1(41) -> 40 1119.31/297.09 , 5_1(43) -> 42 1119.31/297.09 , 5_1(48) -> 2 1119.31/297.09 , 5_1(54) -> 89 1119.31/297.09 , 5_1(55) -> 97 1119.31/297.09 , 5_1(56) -> 19 1119.31/297.09 , 5_1(57) -> 56 1119.31/297.09 , 5_1(62) -> 270 1119.31/297.09 , 5_1(64) -> 29 1119.31/297.09 , 5_1(66) -> 154 1119.31/297.09 , 5_1(67) -> 66 1119.31/297.09 , 5_1(73) -> 72 1119.31/297.09 , 5_1(74) -> 78 1119.31/297.09 , 5_1(83) -> 82 1119.31/297.09 , 5_1(84) -> 195 1119.31/297.09 , 5_1(87) -> 86 1119.31/297.09 , 5_1(90) -> 89 1119.31/297.09 , 5_1(95) -> 94 1119.31/297.09 , 5_1(100) -> 99 1119.31/297.09 , 5_1(104) -> 114 1119.31/297.09 , 5_1(109) -> 108 1119.31/297.09 , 5_1(117) -> 116 1119.31/297.09 , 5_1(118) -> 117 1119.31/297.09 , 5_1(119) -> 118 1119.31/297.09 , 5_1(121) -> 2 1119.31/297.09 , 5_1(123) -> 122 1119.31/297.09 , 5_1(127) -> 126 1119.31/297.09 , 5_1(129) -> 19 1119.31/297.09 , 5_1(131) -> 130 1119.31/297.09 , 5_1(139) -> 138 1119.31/297.09 , 5_1(142) -> 1 1119.31/297.09 , 5_1(142) -> 19 1119.31/297.09 , 5_1(142) -> 26 1119.31/297.09 , 5_1(142) -> 34 1119.31/297.09 , 5_1(142) -> 55 1119.31/297.09 , 5_1(142) -> 108 1119.31/297.09 , 5_1(142) -> 109 1119.31/297.09 , 5_1(142) -> 176 1119.31/297.09 , 5_1(142) -> 203 1119.31/297.09 , 5_1(142) -> 222 1119.31/297.09 , 5_1(142) -> 296 1119.31/297.09 , 5_1(143) -> 142 1119.31/297.09 , 5_1(149) -> 148 1119.31/297.09 , 5_1(152) -> 151 1119.31/297.09 , 5_1(155) -> 154 1119.31/297.09 , 5_1(156) -> 155 1119.31/297.09 , 5_1(162) -> 161 1119.31/297.09 , 5_1(165) -> 164 1119.31/297.09 , 5_1(168) -> 167 1119.31/297.09 , 5_1(173) -> 172 1119.31/297.09 , 5_1(176) -> 175 1119.31/297.09 , 5_1(180) -> 179 1119.31/297.09 , 5_1(184) -> 183 1119.31/297.09 , 5_1(196) -> 195 1119.31/297.09 , 5_1(200) -> 199 1119.31/297.09 , 5_1(203) -> 202 1119.31/297.09 , 5_1(208) -> 207 1119.31/297.09 , 5_1(210) -> 209 1119.31/297.09 , 5_1(217) -> 216 1119.31/297.09 , 5_1(226) -> 225 1119.31/297.09 , 5_1(235) -> 234 1119.31/297.09 , 5_1(239) -> 238 1119.31/297.09 , 5_1(246) -> 245 1119.31/297.09 , 5_1(259) -> 258 1119.31/297.09 , 5_1(262) -> 261 1119.31/297.09 , 5_1(264) -> 263 1119.31/297.09 , 5_1(265) -> 264 1119.31/297.09 , 5_1(268) -> 267 1119.31/297.09 , 5_1(281) -> 40 1119.31/297.09 , 5_1(289) -> 288 1119.31/297.09 , 5_1(299) -> 298 1119.31/297.09 , 5_2(310) -> 309 1119.31/297.09 , 5_2(313) -> 312 1119.31/297.09 , 5_2(316) -> 315 1119.31/297.09 , 5_2(332) -> 331 1119.31/297.09 , 5_2(335) -> 334 1119.31/297.09 , 5_2(338) -> 337 1119.31/297.09 , 5_2(344) -> 343 1119.31/297.09 , 2_0(1) -> 1 1119.31/297.09 , 2_1(1) -> 34 1119.31/297.09 , 2_1(2) -> 156 1119.31/297.09 , 2_1(3) -> 2 1119.31/297.09 , 2_1(5) -> 4 1119.31/297.09 , 2_1(10) -> 156 1119.31/297.09 , 2_1(18) -> 134 1119.31/297.09 , 2_1(19) -> 203 1119.31/297.09 , 2_1(20) -> 11 1119.31/297.09 , 2_1(23) -> 22 1119.31/297.09 , 2_1(25) -> 24 1119.31/297.09 , 2_1(29) -> 28 1119.31/297.09 , 2_1(30) -> 29 1119.31/297.09 , 2_1(31) -> 30 1119.31/297.09 , 2_1(34) -> 63 1119.31/297.09 , 2_1(40) -> 39 1119.31/297.09 , 2_1(44) -> 43 1119.31/297.09 , 2_1(46) -> 45 1119.31/297.09 , 2_1(47) -> 46 1119.31/297.09 , 2_1(49) -> 48 1119.31/297.09 , 2_1(52) -> 51 1119.31/297.09 , 2_1(54) -> 53 1119.31/297.09 , 2_1(56) -> 156 1119.31/297.09 , 2_1(62) -> 61 1119.31/297.09 , 2_1(63) -> 62 1119.31/297.09 , 2_1(65) -> 64 1119.31/297.09 , 2_1(66) -> 74 1119.31/297.09 , 2_1(68) -> 67 1119.31/297.09 , 2_1(69) -> 1 1119.31/297.09 , 2_1(69) -> 10 1119.31/297.09 , 2_1(69) -> 34 1119.31/297.09 , 2_1(69) -> 63 1119.31/297.09 , 2_1(69) -> 68 1119.31/297.09 , 2_1(69) -> 109 1119.31/297.09 , 2_1(69) -> 156 1119.31/297.09 , 2_1(69) -> 163 1119.31/297.09 , 2_1(69) -> 168 1119.31/297.09 , 2_1(69) -> 215 1119.31/297.09 , 2_1(69) -> 229 1119.31/297.09 , 2_1(70) -> 34 1119.31/297.09 , 2_1(71) -> 70 1119.31/297.09 , 2_1(72) -> 71 1119.31/297.09 , 2_1(77) -> 76 1119.31/297.09 , 2_1(85) -> 69 1119.31/297.09 , 2_1(101) -> 100 1119.31/297.09 , 2_1(102) -> 101 1119.31/297.09 , 2_1(104) -> 184 1119.31/297.09 , 2_1(107) -> 229 1119.31/297.09 , 2_1(108) -> 107 1119.31/297.09 , 2_1(109) -> 128 1119.31/297.09 , 2_1(110) -> 12 1119.31/297.09 , 2_1(111) -> 110 1119.31/297.09 , 2_1(113) -> 112 1119.31/297.09 , 2_1(120) -> 119 1119.31/297.09 , 2_1(121) -> 34 1119.31/297.09 , 2_1(122) -> 121 1119.31/297.09 , 2_1(124) -> 123 1119.31/297.09 , 2_1(125) -> 124 1119.31/297.09 , 2_1(132) -> 131 1119.31/297.09 , 2_1(133) -> 132 1119.31/297.09 , 2_1(134) -> 226 1119.31/297.09 , 2_1(140) -> 100 1119.31/297.09 , 2_1(141) -> 140 1119.31/297.09 , 2_1(142) -> 34 1119.31/297.09 , 2_1(143) -> 34 1119.31/297.09 , 2_1(153) -> 152 1119.31/297.09 , 2_1(155) -> 201 1119.31/297.09 , 2_1(156) -> 192 1119.31/297.09 , 2_1(157) -> 34 1119.31/297.09 , 2_1(163) -> 162 1119.31/297.09 , 2_1(167) -> 166 1119.31/297.09 , 2_1(171) -> 34 1119.31/297.09 , 2_1(172) -> 171 1119.31/297.09 , 2_1(178) -> 177 1119.31/297.09 , 2_1(182) -> 181 1119.31/297.09 , 2_1(185) -> 184 1119.31/297.09 , 2_1(187) -> 142 1119.31/297.09 , 2_1(189) -> 188 1119.31/297.09 , 2_1(194) -> 193 1119.31/297.09 , 2_1(202) -> 201 1119.31/297.09 , 2_1(203) -> 229 1119.31/297.09 , 2_1(204) -> 34 1119.31/297.09 , 2_1(206) -> 205 1119.31/297.09 , 2_1(207) -> 206 1119.31/297.09 , 2_1(216) -> 34 1119.31/297.09 , 2_1(222) -> 221 1119.31/297.09 , 2_1(225) -> 224 1119.31/297.09 , 2_1(227) -> 210 1119.31/297.09 , 2_1(229) -> 228 1119.31/297.09 , 2_1(231) -> 230 1119.31/297.09 , 2_1(236) -> 129 1119.31/297.09 , 2_1(242) -> 241 1119.31/297.09 , 2_1(244) -> 56 1119.31/297.09 , 2_1(251) -> 250 1119.31/297.09 , 2_1(261) -> 156 1119.31/297.09 , 2_1(271) -> 34 1119.31/297.09 , 2_1(273) -> 272 1119.31/297.09 , 2_1(274) -> 273 1119.31/297.09 , 2_1(276) -> 275 1119.31/297.09 , 2_1(278) -> 277 1119.31/297.09 , 2_1(279) -> 278 1119.31/297.09 , 2_1(287) -> 261 1119.31/297.09 , 2_1(302) -> 301 1119.31/297.09 , 2_2(312) -> 311 1119.31/297.09 , 2_2(314) -> 313 1119.31/297.09 , 2_2(317) -> 316 1119.31/297.09 , 2_2(336) -> 229 1119.31/297.09 , 2_2(339) -> 338 1119.31/297.09 , 2_2(341) -> 340 1119.31/297.09 , 2_2(342) -> 341 1119.31/297.09 , 2_2(343) -> 342 1119.31/297.09 , 4_0(1) -> 1 1119.31/297.09 , 4_1(1) -> 109 1119.31/297.09 , 4_1(2) -> 109 1119.31/297.09 , 4_1(12) -> 11 1119.31/297.09 , 4_1(18) -> 47 1119.31/297.09 , 4_1(26) -> 291 1119.31/297.09 , 4_1(28) -> 27 1119.31/297.09 , 4_1(33) -> 32 1119.31/297.09 , 4_1(34) -> 41 1119.31/297.09 , 4_1(53) -> 52 1119.31/297.09 , 4_1(55) -> 215 1119.31/297.09 , 4_1(56) -> 1 1119.31/297.09 , 4_1(56) -> 10 1119.31/297.09 , 4_1(56) -> 55 1119.31/297.09 , 4_1(56) -> 68 1119.31/297.09 , 4_1(56) -> 109 1119.31/297.09 , 4_1(56) -> 149 1119.31/297.09 , 4_1(56) -> 169 1119.31/297.09 , 4_1(56) -> 197 1119.31/297.09 , 4_1(56) -> 215 1119.31/297.09 , 4_1(56) -> 222 1119.31/297.09 , 4_1(61) -> 60 1119.31/297.09 , 4_1(65) -> 159 1119.31/297.09 , 4_1(66) -> 65 1119.31/297.09 , 4_1(67) -> 120 1119.31/297.09 , 4_1(68) -> 222 1119.31/297.09 , 4_1(70) -> 69 1119.31/297.09 , 4_1(74) -> 73 1119.31/297.09 , 4_1(78) -> 77 1119.31/297.09 , 4_1(79) -> 35 1119.31/297.09 , 4_1(81) -> 80 1119.31/297.09 , 4_1(84) -> 83 1119.31/297.09 , 4_1(94) -> 93 1119.31/297.09 , 4_1(96) -> 95 1119.31/297.09 , 4_1(99) -> 98 1119.31/297.09 , 4_1(107) -> 106 1119.31/297.09 , 4_1(108) -> 93 1119.31/297.09 , 4_1(109) -> 149 1119.31/297.09 , 4_1(114) -> 113 1119.31/297.09 , 4_1(129) -> 121 1119.31/297.09 , 4_1(130) -> 129 1119.31/297.09 , 4_1(138) -> 137 1119.31/297.09 , 4_1(142) -> 109 1119.31/297.09 , 4_1(143) -> 109 1119.31/297.09 , 4_1(151) -> 150 1119.31/297.09 , 4_1(155) -> 65 1119.31/297.09 , 4_1(156) -> 281 1119.31/297.09 , 4_1(158) -> 157 1119.31/297.09 , 4_1(160) -> 159 1119.31/297.09 , 4_1(161) -> 160 1119.31/297.09 , 4_1(164) -> 135 1119.31/297.09 , 4_1(174) -> 173 1119.31/297.09 , 4_1(183) -> 182 1119.31/297.09 , 4_1(186) -> 240 1119.31/297.09 , 4_1(190) -> 189 1119.31/297.09 , 4_1(191) -> 190 1119.31/297.09 , 4_1(193) -> 188 1119.31/297.09 , 4_1(195) -> 194 1119.31/297.09 , 4_1(198) -> 20 1119.31/297.09 , 4_1(204) -> 142 1119.31/297.09 , 4_1(205) -> 204 1119.31/297.09 , 4_1(213) -> 212 1119.31/297.09 , 4_1(224) -> 223 1119.31/297.09 , 4_1(230) -> 2 1119.31/297.09 , 4_1(233) -> 232 1119.31/297.09 , 4_1(245) -> 244 1119.31/297.09 , 4_1(249) -> 248 1119.31/297.09 , 4_1(254) -> 253 1119.31/297.09 , 4_1(258) -> 257 1119.31/297.09 , 4_1(261) -> 56 1119.31/297.09 , 4_1(263) -> 262 1119.31/297.09 , 4_1(266) -> 265 1119.31/297.09 , 4_1(270) -> 269 1119.31/297.09 , 4_1(281) -> 280 1119.31/297.09 , 4_1(284) -> 283 1119.31/297.09 , 4_1(294) -> 293 1119.31/297.09 , 4_2(130) -> 344 1119.31/297.09 , 4_2(311) -> 310 1119.31/297.09 , 4_2(315) -> 314 1119.31/297.09 , 4_2(331) -> 330 1119.31/297.09 , 4_2(333) -> 332 } 1119.31/297.09 1119.31/297.09 Hurray, we answered YES(?,O(n^1)) 1120.43/297.99 EOF