YES(O(1),O(n^6)) 198.54/60.03 YES(O(1),O(n^6)) 198.54/60.03 198.54/60.03 We are left with following problem, upon which TcT provides the 198.54/60.03 certificate YES(O(1),O(n^6)). 198.54/60.03 198.54/60.03 Strict Trs: 198.54/60.03 { .(y, .(i(y), z)) -> z 198.54/60.03 , .(x, 1()) -> x 198.54/60.03 , .(x, i(x)) -> 1() 198.54/60.03 , .(.(x, y), z) -> .(x, .(y, z)) 198.54/60.03 , .(1(), x) -> x 198.54/60.03 , .(i(x), x) -> 1() 198.54/60.03 , .(i(y), .(y, z)) -> z 198.54/60.03 , i(.(x, y)) -> .(i(y), i(x)) 198.54/60.03 , i(1()) -> 1() 198.54/60.03 , i(i(x)) -> x } 198.54/60.03 Obligation: 198.54/60.03 derivational complexity 198.54/60.03 Answer: 198.54/60.03 YES(O(1),O(n^6)) 198.54/60.03 198.54/60.03 We use the processor 'matrix interpretation of dimension 2' to 198.54/60.03 orient following rules strictly. 198.54/60.03 198.54/60.03 Trs: 198.54/60.03 { .(y, .(i(y), z)) -> z 198.54/60.03 , .(x, 1()) -> x 198.54/60.03 , .(x, i(x)) -> 1() 198.54/60.03 , .(1(), x) -> x 198.54/60.03 , .(i(x), x) -> 1() 198.54/60.03 , .(i(y), .(y, z)) -> z 198.54/60.03 , i(.(x, y)) -> .(i(y), i(x)) 198.54/60.03 , i(1()) -> 1() 198.54/60.03 , i(i(x)) -> x } 198.54/60.03 198.54/60.03 The induced complexity on above rules (modulo remaining rules) is 198.54/60.03 YES(?,O(n^2)) . These rules are removed from the problem. Note that 198.54/60.03 none of the weakly oriented rules is size-increasing. The overall 198.54/60.03 complexity is obtained by composition . 198.54/60.03 198.54/60.03 Sub-proof: 198.54/60.03 ---------- 198.54/60.03 TcT has computed the following triangular matrix interpretation. 198.54/60.03 198.54/60.03 [.](x1, x2) = [1 0] x1 + [1 0] x2 + [2] 198.54/60.03 [0 1] [0 1] [1] 198.54/60.03 198.54/60.03 [1] = [0] 198.54/60.03 [0] 198.54/60.03 198.54/60.03 [i](x1) = [1 2] x1 + [1] 198.54/60.03 [0 1] [0] 198.54/60.03 198.54/60.03 The order satisfies the following ordering constraints: 198.54/60.03 198.54/60.03 [.(y, .(i(y), z))] = [2 2] y + [1 0] z + [5] 198.54/60.03 [0 2] [0 1] [2] 198.54/60.03 > [1 0] z + [0] 198.54/60.03 [0 1] [0] 198.54/60.03 = [z] 198.54/60.03 198.54/60.03 [.(x, 1())] = [1 0] x + [2] 198.54/60.03 [0 1] [1] 198.54/60.03 > [1 0] x + [0] 198.54/60.03 [0 1] [0] 198.54/60.03 = [x] 198.54/60.03 198.54/60.03 [.(x, i(x))] = [2 2] x + [3] 198.54/60.03 [0 2] [1] 198.54/60.03 > [0] 198.54/60.03 [0] 198.54/60.03 = [1()] 198.54/60.03 198.54/60.03 [.(.(x, y), z)] = [1 0] x + [1 0] y + [1 0] z + [4] 198.54/60.03 [0 1] [0 1] [0 1] [2] 198.54/60.03 >= [1 0] x + [1 0] y + [1 0] z + [4] 198.54/60.03 [0 1] [0 1] [0 1] [2] 198.54/60.03 = [.(x, .(y, z))] 198.54/60.03 198.54/60.03 [.(1(), x)] = [1 0] x + [2] 198.54/60.03 [0 1] [1] 198.54/60.03 > [1 0] x + [0] 198.54/60.03 [0 1] [0] 198.54/60.03 = [x] 198.54/60.03 198.54/60.03 [.(i(x), x)] = [2 2] x + [3] 198.54/60.03 [0 2] [1] 198.54/60.03 > [0] 198.54/60.03 [0] 198.54/60.03 = [1()] 198.54/60.03 198.54/60.03 [.(i(y), .(y, z))] = [2 2] y + [1 0] z + [5] 198.54/60.03 [0 2] [0 1] [2] 198.54/60.03 > [1 0] z + [0] 198.54/60.03 [0 1] [0] 198.54/60.03 = [z] 198.54/60.03 198.54/60.03 [i(.(x, y))] = [1 2] x + [1 2] y + [5] 198.54/60.03 [0 1] [0 1] [1] 198.54/60.03 > [1 2] x + [1 2] y + [4] 198.54/60.03 [0 1] [0 1] [1] 198.54/60.03 = [.(i(y), i(x))] 198.54/60.03 198.54/60.03 [i(1())] = [1] 198.54/60.03 [0] 198.54/60.03 > [0] 198.54/60.03 [0] 198.54/60.03 = [1()] 198.54/60.03 198.54/60.03 [i(i(x))] = [1 4] x + [2] 198.54/60.03 [0 1] [0] 198.54/60.03 > [1 0] x + [0] 198.54/60.03 [0 1] [0] 198.54/60.03 = [x] 198.54/60.03 198.54/60.03 198.54/60.03 We return to the main proof. 198.54/60.03 198.54/60.03 We are left with following problem, upon which TcT provides the 198.54/60.03 certificate YES(?,O(n^2)). 198.54/60.03 198.54/60.03 Strict Trs: { .(.(x, y), z) -> .(x, .(y, z)) } 198.54/60.03 Obligation: 198.54/60.03 derivational complexity 198.54/60.03 Answer: 198.54/60.03 YES(?,O(n^2)) 198.54/60.03 198.54/60.03 TcT has computed the following triangular matrix interpretation. 198.54/60.03 198.54/60.03 [.](x1, x2) = [1 1] x1 + [1 0] x2 + [0] 198.54/60.03 [0 1] [0 1] [4] 198.54/60.03 198.54/60.03 The order satisfies the following ordering constraints: 198.54/60.03 198.54/60.03 [.(.(x, y), z)] = [1 2] x + [1 1] y + [1 0] z + [4] 198.54/60.03 [0 1] [0 1] [0 1] [8] 198.54/60.03 > [1 1] x + [1 1] y + [1 0] z + [0] 198.54/60.03 [0 1] [0 1] [0 1] [8] 198.54/60.03 = [.(x, .(y, z))] 198.54/60.03 198.54/60.03 198.54/60.03 Hurray, we answered YES(O(1),O(n^6)) 198.54/60.03 EOF