YES(O(1),O(n^1)) 160.97/60.02 YES(O(1),O(n^1)) 160.97/60.02 160.97/60.02 We are left with following problem, upon which TcT provides the 160.97/60.02 certificate YES(O(1),O(n^1)). 160.97/60.02 160.97/60.02 Strict Trs: 160.97/60.02 { f(f(x)) -> g(f(x)) 160.97/60.02 , g(g(x)) -> f(x) } 160.97/60.02 Obligation: 160.97/60.02 derivational complexity 160.97/60.02 Answer: 160.97/60.02 YES(O(1),O(n^1)) 160.97/60.02 160.97/60.02 We use the processor 'matrix interpretation of dimension 1' to 160.97/60.02 orient following rules strictly. 160.97/60.02 160.97/60.02 Trs: 160.97/60.02 { f(f(x)) -> g(f(x)) 160.97/60.02 , g(g(x)) -> f(x) } 160.97/60.02 160.97/60.02 The induced complexity on above rules (modulo remaining rules) is 160.97/60.02 YES(?,O(n^1)) . These rules are moved into the corresponding weak 160.97/60.02 component(s). 160.97/60.02 160.97/60.02 Sub-proof: 160.97/60.02 ---------- 160.97/60.02 TcT has computed the following triangular matrix interpretation. 160.97/60.02 160.97/60.02 [f](x1) = [1] x1 + [40] 160.97/60.02 160.97/60.02 [g](x1) = [1] x1 + [32] 160.97/60.02 160.97/60.02 The order satisfies the following ordering constraints: 160.97/60.02 160.97/60.02 [f(f(x))] = [1] x + [80] 160.97/60.02 > [1] x + [72] 160.97/60.02 = [g(f(x))] 160.97/60.02 160.97/60.02 [g(g(x))] = [1] x + [64] 160.97/60.02 > [1] x + [40] 160.97/60.02 = [f(x)] 160.97/60.02 160.97/60.02 160.97/60.02 We return to the main proof. 160.97/60.02 160.97/60.02 We are left with following problem, upon which TcT provides the 160.97/60.02 certificate YES(O(1),O(1)). 160.97/60.02 160.97/60.02 Weak Trs: 160.97/60.02 { f(f(x)) -> g(f(x)) 160.97/60.02 , g(g(x)) -> f(x) } 160.97/60.02 Obligation: 160.97/60.02 derivational complexity 160.97/60.02 Answer: 160.97/60.02 YES(O(1),O(1)) 160.97/60.02 160.97/60.02 Empty rules are trivially bounded 160.97/60.02 160.97/60.02 Hurray, we answered YES(O(1),O(n^1)) 160.97/60.04 EOF